Interestingly, the interconversion between 14 and 15, although
leading to dramatic geometrical changes, is quantitative and
reversible. This changeover process can be triggered by other
metals such as Ag+ and Li+.
We thank the Ministry of Education for a fellowship (to
M. L.).
Notes and references
† Selected data: 14: dH(CD2Cl2, 400 MHz) 10.13 (s, 4H), 9.60 (d, 2H), 9.47
(d, 2H), 9.43 (s, 2H), 9.30 (s, 2H), 8.90 (d, 2H), 8.52 (d, 2H), 8.42 (d, 4H),
8.31 (d, 2H), 8.17 (d, 4H), 8.13 (d, 4H), 8.04 (t, 2H), 7.98 (s, 2H), 7.97 (d,
2H), 7.89 (d, 4H), 7.86 (t, 2H), 7.78 (d, 4H), 7.75 (s, 2H), 7.62 (d, 4H), 7.54
(d, 4H), 6.63 (d, 4H), 4.95 (m, 4H), 4.41 (m, 4H), 3.95 (t, 8H), 3.81 (t, 8H),
2.44 (s, 12H), 2.17 (t, 8H), 2.06 (t, 8H), 1.84 (s, 12H), ≈ 1.68 (m, 16H), 1.60
(s, 36H), 1.51 (s, 36H), ≈ 1.50 (m, 16H), ≈ 1.40 (m, 16H), 0.87 (t, 12H),
0.83 (t, 12H); m/z (FAB) 3783.6 (M+); l(CH2Cl2)/nm 415, 538, 574.
15: dH(CD2Cl2, 400 MHz) 10.07 (s, 4H), 9.56 (d, 2H), 9.39 (d, 2H), 9.36
(s, 2H), 9.15 (d, 4H), 8.80 (s, 2H), 8.57 (d, 2H), 8.46 (d, 2H), 8.26 (d, 4H),
8.21 (d, 4H), 8.18 (d, 4H), 8.11 (d, 2H), 8.09 (d, 4H), 8.00 (t, 2H), 7.99 (d,
2H), 7.91 (d, 4H), 7.90 (s, 2H), 7.85 (d, 4H), 7.82 (t, 2H), 7.46 (s, 2H), 7.39
(d, 4H), 4.82 (m, 4H), 4.43 (m, 4H), 3.91 (t, 8H), 3.70 (t, 8H), 2.40 (s, 12H),
2.27 (s, 12H), 2.12 (t, 8H), 1.93 (t, 8H), 1.68 (t, 8H), 1.55 (s, 36H), 1.47 (s,
36H), ≈ 1.40 (m, 16H), ≈ 1.35 (m, 8H), ≈ 1.25 (m, 8H), ≈ 1.20 (m, 8H),
0.85 (t, 12H), 0.72 (t, 12H); m/z (FAB) 3720.6 (M+); l(CH2Cl2)/nm 413,
538, 574.
1 A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97,
1515; L. Fabbrizzi and A. Poggi, Chem. Soc. Rev., 1995, 197 and
references therein.
2 J.-P. Sauvage, Acc. Chem. Res., in press; V. Balzani, M. Go´mez-Lo´pez
and J. F. Stoddart, Acc. Chem. Res., in press; D. W. Urry, Angew. Chem.,
Int. Ed. Engl., 1993, 32, 819.
3 (a) J. Howard, Nature, 1997, 389, 561; (b) T. Elston, H. Wang and
G. Oster, Nature, 1998, 391, 510 and references therein.
4 S. Shinkai, M. Ishihara, K. Ueda and O. Manabe, J. Chem. Soc., Chem.
Commun., 1984, 727; F. Wu¨rthner and J. Rebek, Jr., Angew. Chem., Int.
Ed. Engl., 1995, 34, 446.
5 S. Zahn and J. W. Canary, Angew. Chem., Int. Ed. Engl., 1998, 37, 305;
L. Zelikovich, J. Libman and A. Shanzer, Nature, 1995, 374, 790.
6 D. B. Amabilino, C. O. Dietrich-Buchecker, A. Livoreil, Llu¨ısa Pe´rez-
Garc´ıa, J.-P. Sauvage and J. F. Stoddart, J. Am. Chem. Soc., 1996, 118,
3905; P. R. Ashton, S. Iqbal, J. F. Stoddart and N. D. Tinker, Chem.
Commun., 1996, 479; L. Fabbrizzi, M. Licchelli, P. Pallavicini and
L. Parodi, Angew. Chem., Int. Ed. Engl., 1998, 37, 800.
Fig. 3 Metallation–demetallation of the rotaxane induces a complete
changeover of the molecule. The most important proton connectivities, as
determined by 2D 1H NMR, are indicated by double arrows.
exists between the rear of the 1,10-phenanthroline nucleus
belonging to the dumbbell-like fragment and the endocyclic part
of the ring-embedded porphyrin. As indicated in Fig. 3,
demetallation of 14 affords 15,† this compound displaying a
profoundly modified geometry as compared to 14. In particular,
NOE effects show close proximity between Hm and HoA as well
as between Hpy and HoA and between HoB and HMe, which
indicates that the geometry of the molecule is roughly as
depicted in Fig. 3.
7 R. A. Bissell, E. Co´rdova, A. E. Kaifer and J. F. Stoddart, Nature, 1994,
369, 133.
8 A. Livoreil, C. O. Dietrich-Buchecker and J.-P. Sauvage, J. Am. Chem.
Soc., 1994, 116, 9399; A. Livoreil, J.-P. Sauvage, N. Armaroli,
V. Balzani, L. Flamigni and B. Venturi, J. Am. Chem. Soc., 1997, 119,
12114; J.-P. Collin, P. Gavin˜a and J.-P. Sauvage, New J. Chem., 1997,
21, 525.
Space-filling models suggest that within the demetallated
rotaxane 15, free rotation of the ‘axle’ within the ring can take
place. The driving force for bringing PAu+ between the PZn
units, playing the role of two jaws, is certainly related to the
extremely different and complementary electronic properties of
PAu+ (electron acceptor) and PZn (electron donor). Very
approximate geometrical features can be estimated from the
models. Of particular interest are the centre-to-centre (Au···Zn)
and the edge-to-edge distances between PAu+ and PZn. The
estimated centre-to-centre separation is ca. 19 and ca. 7 Å for 14
and 15 respectively. The edge-to-edge distance, which is more
relevant to electron transfer, is ca. 12 and ca. 5 Å for 14 and 15,
although it should be kept in mind that 15 is certainly very
flexible, with difficult to estimate interatomic distances.
9 J.-C. Chambron, V. Heitz and J.-P. Sauvage, J. Am. Chem. Soc., 1993,
115, 12378; J.-C. Chambron, A. Harriman, V. Heitz and J.-P. Sauvage,
J. Am. Chem. Soc., 1993, 115, 6109; J.-C. Chambron, C. O. Dietrich-
Buchecker, V. Heitz, N. Solladie´ and J.-P. Sauvage, C. R. Acad. Sci.
Paris, Ser. IIb, 1996, 323, 483; M. Linke, J.-C. Chambron, V. Heitz and
J.-P. Sauvage, J. Am. Chem. Soc., 1997, 119, 11329.
10 G. Arsenault, E. Bullock and S. F. MacDonald, J. Am. Chem. Soc., 1960,
82, 4384; J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and
A. M. Marguerettaz, J. Org. Chem., 1987, 52, 827.
11 C. O. Dietrich-Buchecker, J.-P. Sauvage and J.-P. Kintzinger, Tetra-
hedron Lett., 1983, 24, 5095; C. O. Dietrich-Buchecker and
J.-P. Sauvage, Tetrahedron, 1990, 46, 503.
Communication 8/05746J
2470
Chem Commun., 1998, 2469–2470