4
Tetrahedron
cyclopentadienyl-type anion [C70(SR)5]-. This anion undergoes
8 Al.-Matar, H.; Hitchckock, P. B.; Avent, A. G.; Taylor, R. Chem. Commun.,
2000, 12, 1071-1072
protonation during workup and chromatography on silica which
results in isolation of the target products C70(SR)5H such as 1a.
The mechanism of the primary reaction between C70Cl10 and
RSH was also analyzed using DFT calculations and the
corresponding discussion is provided in the ESI. Briefly, the
computational results supported our hypothesis concerning the
possibility of the attachment of RS groups to several favorable
locations on the carbon cage besides the one bearing the leaving
chlorine atom. At the same time, the formation of the
cyclopentadienyl moiety surrounded by five RS groups was
9 Al-Matar, H.; Abdul-Sada, A. K.; Avent, A. G.; Taylor, R. Org. Lett., 2001,
3, 1669-1671.
10 Troshina, O. A.; Troshin, P. A.; Peregudov, A. S.; Kozlovskiy, V. I.;
Balzarini, J.; Lyubovskaya, R. N. Org. Biomol. Chem., 2007, 5, 2783-2791
11 Troshina, O. A.; Troshin, P. A.; Peregudov, A. S.; Balabaeva, E. M.;
Kozlovskiy, V. I.; Lyubovskaya, R. N. Tetrahedron, 2006, 62, 10147-10151
12 Kornev, A. B.; Khakina, E. A.; Troyanov, S. I.; Kushch, A. A.; Deryabin,
D. G.; Peregudov, A. S.; Vasilchenko, A.; Martynenko, V. M.; Troshin, P. A.
Chem. Commun., 2012, 48, 5461-5463
13 Khakina, E. A.; Yurkova, A. A.; Peregudov, A. A.; Troyanov, S. I.; Trush,
V.; Vovk, A. I.; Mumyatov, A. V.; Martynenko, V. M.; Balzarini, J.; Troshin,
P. A. Chem. Commun., 2012, 48, 7158-7160
shown to be
a driving force of the process producing
14 Yurkova, A. A.; Khakina, E. A.; Troyanov, S. I.; Chernyak, A.; Shmygleva,
L.; Peregudov, A. A.; Martynenko, V. M.; Dobrovolskiy, Y. A.; Troshin, P.
A. Chem. Commun., 2012, 48, 8916-8918
thermodynamically favorable product 1 (Scheme 1).
We emphasize that the proposed radical substitution
mechanism shown in Scheme 3 conforms with all experimental
results including the ESR observation of the RS. radicals trapped
with DMPO. We strongly believe that the previously reported
reaction of C60Cl6 with thiols13 also proceeds via a radical
mechanism similar to the one outlined in Scheme 3. Indeed, ESR
spectroscopy revealed virtually identical radical species trapped
with DMPO in the system C60Cl6+RSH+R’3N (ESI Fig. S17).
However, the substitution pathway (I) strongly dominates over
the reduction pathway (II) in the case of C60Cl6 thus producing
C60(SR)5H products with an excellent selectivity. This might be a
consequence of the fact that the substituents occupy exactly the
same positions on the C60 cage where the chlorine atoms were
attached in the parent C60Cl6.
15 Avent, A.; Birkett, P. R.; Darwish, A.; Kroto, H. W.; Taylor, R.; Walton, D.
R. M. Tetrahedron, 1996, 52, 5235-5246
16 Al-Matar, H.; Abdul Sada, A. K.; Avent, A. G.; Taylor, R.; Wei, X.-W. J.
Chem. Soc. Perkin Trans. 2, 2002, 7, 1251-1256
17 Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor, R.;
Walton, D. R. M. Chem. Commun., 1996, 1231-1232
18 Darwish, A. D.; de Guio, P.; Taylor, R. Fuller. Nanot. Carb. Nanostruct.,
2002, 10, 261-272
19 Kornev, A. B.; Peregudov, A. S.; Martynenko, V. M.; Balzarini, J.;
Hoorelbeke, B.; Troshin, P. A. Chem. Commun., 2011, 47, 8298-8300
20 Khakina, E. A.; Yurkova, A. A.; Novikov, A. V.; Piven, N. P.; Chernyak,
A. V.; Peregudov, A. S.; Troshin, P. A. Mendeleev Commun. 2014, 211-213
21 Spielmann, H. P.; Weedon, B. R.; Meier, M. S. J. Org. Chem., 2000, 65,
2755-2758
22 Sawamura, M.; Toganoh, M.; Iikura, H.; Matsuo, Y.; Hirai, A.; Nakamura,
E. J. Mater. Chem., 2002, 12, 2109–2115
3. Conclusion
23 Xiao, Z.; Wang, F.; Huang, S.; Gan, L.; Zhou, J.; Yuan, G.; Lu, M.;. Pan, J.
J. Org. Chem., 2005, 70, 2060-2066
In conclusion, we report a novel reaction of C70Cl10 involving
thiols as reagents which possesses a radical nature as it was
determined from ESR experiments. Unlike a previously known
Friedel-Crafts arylation method producing mainly C70Ar8/10
derivatives, the investigated reaction proceeds through a more
complicated pathway leading to complete detachment of the
chlorine atoms from the equator of the carbon cage and addition
of organic addends around one of the poles.
24 Gan, L. B.; Huang, S. H.; Zhang, X. A.; Zhang, A. X.; Cheng, B. C.;
Cheng, H.; Li, X. L.; Shang, G. J. Am. Chem. Soc. 2002, 124, 13384-1385
25 Troshina, O. A.; Troshin, P. A.; Peregudov, A. S.; Kozlovskiy, V. I.;
Lyubovskaya, R. N. Eur. J. Org. Chem. 2006, 5243-5248
26 Ignat’eva, D. V.; Goryunkov, A. A.; Tamm, N. B.; Ioffe, I. N.;
Avdoshenko, S. M.; Sidorov, L. N.; Dimitrov, A.; Kemnitz, E.; Troyanov, S.
I. Chem. Commun., 2006, 1778-1780
27 Goryunkov, A. A.; Ignat’eva, D. V.; Tamm, N. B.; Moiseeva, N. N.; Ioffe,
I. N.; Avdoshenko, S. M.; Markov, V. Yu.; Sidorov, L. N.; Kemnitz, E.;
Troyanov, S. I. Eur. J. Org. Chem., 2006, 2508-2512
The obtained C70[SR]5H products were shown to be very
unstable and undergo quantitative decomposition to pristine C70,
RSSR and RSH at elevated temperatures (e.g. 50 oC), under
extended storage at room temperature or in solution due to
solvation effects. The surprisingly low stability of C70[SR]5H
compounds was rationalized using DFT calculations.
28 Troshin, P. A.; Lyubovskaya, R. N.; Ioffe, I. N.; Shustova, N. B.; Kemnitz,
E.; Troyanov, S. I. Angew. Chem. Int. Ed. 2005, 44, 235-237; Troshin, P. A.;
Łapin´ski, A.; Bogucki, A.; Połomska, M.; Lyubovskaya, R. N. Carbon 2006,
44, 2770-2777
29 A. A. Gakh, A. A. Tuinman. Tetrahedron Lett. 2001, 42, 7137-7139; A.
Avent, R. Taylor. Chem. Commun. 2002, 2726-2727
30 Clancy, R.; Cederbaum, A. I.; Stoyanovsky, D. A. J. Med. Chem. 2001, 44,
2035-2038
Acknowledgments
Supplementary Material
This work was supported by Russian Science Foundation
(grant 15-13-00102). We thank Dr. V. K. Koltover for DMPO
sample and useful discussions.
Description of the experimental and DFT calculation procedures,
Figures S1-S18.
References and notes
1 Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor, R.;
Walton, D. R. M. J. Chem. Soc. Chem. Commun., 1993, 15, 1230-1232
2 Birkett, P. R.; Avent, A. G.; Darwish, A. D.; Kroto, H. W.; Taylor, R.;
Walton, D. R. M. J. Chem. Soc. Chem. Commun., 1995, 6, 683-684
3 Troshin, P. A.; Lyubovskaya, R. N.; Ioffe, I. N.; Shustova, N. B.; Kemnitz,
E.; Troyanov, S. I. Angew. Chem., Int. Ed., 2005, 44, 234-237
4 Troyanov, S. I.; Shustova, N. B.; Ioffe, I. N.; Turnbull, A. P.; Kemnitz, E.
Chem. Commun., 2005, 1, 72-75.
5 Avent, A.; Birkett, P. R.; Darwish, A.; Houlton, S.; Taylor, R.; Thomson, K.
S .T.; Wei, X. W. J. Chem. Soc. Perkin Trans. 2, 2001, 5, 782-786
6 Birkett, P. B.; Avent, A. G.; Darwish, A.; Kroto, H. W.; Taylor, R.; Walton,
D. R. M. J. Chem. Soc. Perkin Trans. 2, 1997, 3, 457-462
7 Abdul Sada, A.; Avent, A.; Birkett, P.; Kroto, H. W.; Taylor, R.; Walton, D.
R. M. J. Chem. Soc. Perkin Trans. 1, 1998, 3, 393-396