10.1002/anie.201801112
Angewandte Chemie International Edition
COMMUNICATION
Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075-10166; d) C. K.
Prier, D. A. Rankic, D. W. MacMillan, Chem. Rev. 2013, 113, 5322-5363;
e) J. M. Narayanam, C. R. Stephenson, Chem. Soc. Rev. 2011, 40, 102-
113; f) X. Lang, W. Ma, C. Chen, H. Ji, J. Zhao, Acc. Chem. Res. 2013,
47, 355-363; g) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan, A. Lei,
Angew. Chem. 2014, 126, 512-516; h) M. Neumann, S. Füldner, B. König,
K. Zeitler, Angew. Chem. Int. Ed. 2011, 50, 951-954.
[2]
[3]
Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511.
J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Adv. Mater. 2017,
29, 1601694.
[4]
[5]
[6]
a) M. Wang, K. Han, S. Zhang, L. Sun, Coord. Chem. Rev. 2015, 287, 1-
14; b) M. Yamamoto, L. Wang, F. Li, T. Fukushima, K. Tanaka, L. Sun,
H. Imahori, Chem. Sci. 2016, 7, 1430-1439; c) M. F. Kuehnel, K. L.
Orchard, K. E. Dalle, E. Reisner, J. Am. Chem. Soc. 2017.
a) X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson,
K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80; b) S. Guo, Z. Deng,
M. Li, B. Jiang, C. Tian, Q. Pan, H. Fu, Angew. Chem. Int. Ed. 2016, 55,
1830-1834.
a) K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti, K. Domen, J.
Phys. Chem. C 2009, 113, 4940-4947; b) X.-H. Li, M. Antonietti, Chem.
Soc. Rev. 2013, 42, 6593-6604.
[7]
[8]
[9]
Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc. 2010, 132,
6294-6295.
J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X.
Fu, M. Antonietti, X. Wang, Angew. Chem. Int. Ed. 2010, 49, 441-444.
Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl, I.
Chorkendorff, Angew. Chem. Int. Ed. 2013, 52, 3621-3625.
[10] a) J.-S. Wu, S.-W. Cheng, Y.-J. Cheng, C.-S. Hsu, Chem. Soc. Rev.
2015, 44, 1113-1154; b) N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A.
Thomas, Chem. Soc. Rev. 2017, 46, 3302-3321.
Figure 4. Scope of substrates for photocatalytic synthesis of benzophosphole
oxides using asy-CTF as a photocatalyst.
[11] a) K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. r. Senker,
B. V. Lotsch, J. Am. Chem. Soc. 2014, 136, 1730-1733; b) C. Yang, B.
C. Ma, L. Zhang, S. Lin, S. Ghasimi, K. Landfester, K. A. Zhang, X. Wang,
Angew. Chem. Int. Ed. 2016, 55, 9202-9206; c) R. S. Sprick, J.-X. Jiang,
B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M. A. Zwijnenburg, D. J.
Adams, A. I. Cooper, J. Am. Chem. Soc. 2015, 137, 3265-3270; d) L. Li,
Z. Cai, Q. Wu, W.-Y. Lo, N. Zhang, L. X. Chen, L. Yu, J. Am. Chem. Soc.
2016, 138, 7681-7686; e) L. Wang, R. Fernández-Terán, L. Zhang, D. L.
A. Fernandes, L. Tian, H. Chen, H. Tian, Angew. Chem. 2016, 128,
12494-12498; f) P. B. Pati, G. Damas, L. Tian, D. L. A. Fernandes, L.
Zhang, I. B. Pehlivan, T. Edvinsson, C. M. Araujo, H. Tian, Energy
Environ. Sci. 2017, 10, 1372-1376.
In summary, a simple structural design of asymmetric
covalent triazine framework as an efficient visible light-active
photocatalyst for photoredox reactions has been introduced. By
incorporating the asymmetric building block, four different
molecular donor-acceptor domains were obtained within the
backbone structure. The asymmetric donor-acceptor structure led
to enhanced photogenerated charge separation, intramolecular
electron transfer and sufficient photoredox potential. The
asymmetric CTF demonstrated its superior photocatalytic
efficiency compared to the symmetric CTFs containing similar
donor and acceptor moieties, proven by the photocatalytic
[12] a) Z. J. Wang, S. Ghasimi, K. Landfester, K. A. Zhang, Chem. Commun.
2014, 50, 8177-8180; b) Y. Chen, J. Zhang, M. Zhang, X. Wang, Chem.
Sci. 2013, 4, 3244-3248; c) C. Su, R. Tandiana, B. Tian, A. Sengupta, W.
Tang, J. Su, K. P. Loh, ACS Cat. 2016, 6, 3594-3599.
formation
reaction
of
benzophosphole
oxides
from
[13] Z. J. Wang, S. Ghasimi, K. Landfester, K. A. Zhang, Chem. Mater. 2015,
27, 1921-1924.
diphenylphosphine oxide and diphenylacetylene derivatives. We
believe that this study could establish a simple but new design
strategy of organic semiconductor photocatalysts for a broader
range of applications such as water splitting and CO2 reduction
etc.
[14] a) R. Marschall, Adv. Funct. Mater. 2014, 24, 2421-2440; b) H. Kisch,
Angew. Chem. Int. Ed. 2013, 52, 812-847.
[15] Z. J. Wang, S. Ghasimi, K. Landfester, K. A. Zhang, Adv. Mater. 2015,
27, 6265-6270.
[16] J. Chen, C. L. Dong, D. Zhao, Y. C. Huang, X. Wang, L. Samad, L. Dang,
M. Shearer, S. Shen, L. Guo, Adv. Mater. 2017.
[17] a) S. Melissen, T. Le Bahers, S. N. Steinmann, P. Sautet, J. Phys. Chem.
C 2015, 119, 25188-25196; b) J. Chen, C. L. Dong, D. Zhao, Y. C. Huang,
X. Wang, L. Samad, L. Dang, M. Shearer, S. Shen, L. Guo, Adv. Mater.
2017, 29.
Acknowledgements
The authors thank the Max Planck Society for financial support.
J.B. thanks the Alexander von Humboldt Foundation for the
postdoctoral research fellowship. W. H. thanks the China
Scholarship Council (CSC) for the fellowship.
[18] a) S. Ren, M. J. Bojdys, R. Dawson, A. Laybourn, Y. Z. Khimyak, D. J.
Adams, A. I. Cooper, Adv. Mater. 2012, 24, 2357-2361; b) J. Bi, W. Fang,
L. Li, J. Wang, S. Liang, Y. He, M. Liu, L. Wu, Macromol. Rapid Commun.
2015, 36, 1799-1805; c) W. Huang, Z. J. Wang, B. C. Ma, S. Ghasimi, D.
Gehrig, F. Laquai, K. Landfester, K. A. Zhang, J. Mater. Chem. A 2016,
4, 7555-7559.
Keywords: Asymmetric organic semiconductor • Photocatalysis
• Covalent triazine framework • Donor acceptor • Metal-free
[19] M. J. Bojdys, J. Jeromenok, A. Thomas, M. Antonietti, Adv. Mater. 2010,
22, 2202-2205.
[20] H. Sun, G. Zhou, S. Liu, H. M. Ang, M. O. Tadé, S. Wang, Chem. Eng. J.
2013, 231, 18-25.
[1]
a) M. Oelgemöller, C. Jung, J. Mattay, Pure Appl. Chem. 2007, 79, 1939-
1947; b) N. Hoffmann, Chem. Rev. 2008, 108, 1052-1103; c) N. A.
This article is protected by copyright. All rights reserved.