3966
D. Delorme et al. / Tetrahedron: Asymmetry 9 (1998) 3963–3966
References
1. Bishop, M. J.; McNutt, R. W. Bioorg & Med. Chem. Lett. 1995, 5, 1311–1314.
2. (a) For a recent review on additions of organometallic reagents to C_N bonds see: Bloch, R. Chem. Rev. 1998, 98,
1407–1438. (b) Pridgen, L. N.; Wu, M. J. J. Org. Chem. 1991, 56, 1340–1344. (c) Scialdone, M. A.; Meyers, A. I.
Tetrahedron Lett. 1994, 35, 7533–7536. (d) Ukaji, Y.; Watai, T.; Sumi, T.; Fujisawa, T. Chem. Lett. 1991, 1555–1558.
(e) Miao, C. K.; Sorcek, R.; Jones, P. J. Tetrahedron Lett. 1993, 34, 2259–2262. (f) Spero, D. M.; Kapadia, S. R. J. Org.
Chem. 1997, 62, 5537–5541. (g) Rodrigues, K. E.; Basha A.; Summers J. B.; Brooks D. W. Tetrahedron Lett. 1988, 29,
3455–3458.
3. Pridgen, L. N.; Mokhallalati, M. K.; Wu, M. J. J. Org. Chem. 1992, 57, 1237–1241.
4. Opalka, C. J.; D’Ambra, T. E.; Faccone, J. J.; Bodson, S.; Cossement, E. Synthesis 1995, 766–768.
5. (a) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1996, 37, 4837–4840. (b) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1995,
36, 9153–9156.
6. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–875.
7. The equilibrium mixture of aldimine/oxazolidine is solvent dependent. A ratio of 9:1 in favor of the aldimine 7a is observed
in deuterated chloroform while a ratio of 20:1 is observed in THF-d8. The ratios were obtained from 1H NMR integration
of the corresponding aldimine Ha and oxazoline proton Hb.
8. Typical procedure for the alkylation of aldimine/oxazolidine using phenyllithium. To a solution of imine 2 (125 mg, 0.4
mmol) in dry THF (3 ml) was added HMPA (0.3 ml) followed at 0°C with PhLi (500 µl, 0.9 mmol) under nitrogen
over a period of 1 min. The reaction mixture was stirred at 0°C for 30 min then quenched with aqueous NH4Cl. The
resulting mixture was extracted with ethyl acetate (5×) and dried over MgSO4. Purification using flash chromatography
(hexane:ethyl acetate 7:3) afforded 71% of 3. 1H NMR (400 MHz, CDCl3); δ: 2.05 (bs, 2H); 3.65 (m, 3H); 4.66 (s, 1H);
7.16–7.50 (m, 14H); 13C NMR (100 MHz, CDCl3); δ: 61.58, 62.87, 66.99, 127.30, 127.44, 127.58, 127.79, 128.77, 128.90,
131.50.
9. Compound 3: HPLC (Chiracel OD, 10% i-PrOH in hexanes, 1 ml/min, λ=215 nm) >95% de.
10. (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Konija, Y. J. Am. Chem. Soc. 1989, 111, 4392–4398. (b)
Imamoto, T.; Takiyama, N.; Nakamura, K. Tetrahedron Lett. 1985, 26, 4763–4766.
11. Mokhallalati, M. K.; Pridgen, L. N. Synth. Commun. 1993, 23, 2055–2064.
25
12. Compound 4 derived from (R)-phenylglycinol gave [α]D −2.3 (c 1.0, MeOH) and compound 4 derived from (S)-
phenylglycinol gave [α]D25+2.3 (c 1.0, MeOH).
13. Compound 5: GC–MS (method 200-280, column HP-5, 1 ml/min) 92% de.
14. A similar negative optical rotation value for compound 4 was obtained using compound A5 and the following synthetic
scheme:
15. The aldehyde 6 was prepared by heating 4-carboxybenzaldehyde with one equivalent of thionyl chloride at 50°C in a
mixture of CH2Cl2:DMF 9:1 followed by the addition of diethylamine at 0°C. This procedure gave 90% yield of aldehyde
6.
16. Compound 10: GC–MS (method 200-280, column HP-5, 1 ml/min) 93% de.
17. Compound 13: HPLC (Chiracel AD, 20% i-PrOH in hexanes, 1 ml/min, λ=215 nm) 91% de. [α]D25 +90.8 (c 1.0, CH2Cl2).
18. Schinzer, D.; Abel, U.; Jones, P. G. Synlett 1997, 632–634.
19. Compound 14: HPLC (Chiralcel AD, 1% i-PrOH in hexanes, 1 ml/min, λ=215 nm) 91% ee. [α]D25 +6.37 (c 1.0, CH2Cl2).
25
20. Compound 15: HPLC (Chiralcel AD, 20% i-PrOH in hexanes, 1 ml/min, λ=215 nm) 91% ee. [α]D +2.52 (c 2.02,
CH2Cl2).