layer. The separated 4-chloro substituted ester 8 may be filtered off and characterized. However it is more
expedient to extract it with CH2Cl2 (3 × 30 ml). The pH of the aqueous layer was checked and Na2CO3 was
added if necessary. The solvent was removed, and to the residue were added ethanol (30 ml), benzylamine
(1.31 ml, 0.012 mol), and triethylamine (1.4 ml, 0.01 mol), and the mixture boiled for 5 h. The reflux condenser
was changed to a downward condenser and the alcohol was distilled off. The obtained 4-benzylaminoquinolone
11 may also be separated in the pure state [13]. If there is no need the reaction mixture is treated with water, and
the resulting 4-benzylaminoquinolone 11 extracted with CH2Cl2 (3 × 30 ml). The organic extracts were
combined, washed with water, and the solvent distilled. Conc. HCl (15 ml) was added to the residue, rapidly
heated to boiling, boiled for 2 min, after which the mixture was poured directly into cold water. The reaction
mixture was neutralized with Na2CO3. After several hours the precipitated solid 4-amino ester 1a was filtered
off, washed with water, and dried. Yield 2.04 g (83%).
The esters of 1-substituted 4-amino-2-oxoquinoline-3-carboxylic acids 1c,d,f,g were obtained
analogously (Tables 1 and 2).
REFERENCES
1.
2.
I. V. Ukrainets, O. V. Gorokhova, and L. V. Sidorenko, Khim. Geterotsikl. Soedin., 1195 (2005).
R. W. Carling, P. D. Leeson, K. W. Moore, C. R. Moyes, M. Duncton, M. L. Hudson, R. Baker,
A. C. Foster, S. Grinwood, J. A. Kemp, G. R. Marshall, M. D. Tricklebank, and K. L. Saywell, J. Med.
Chem., 40, 754 (1997).
3.
4.
M. Rowley, J. J. Kulagowski, A. P. Watt, D. Rathbone, G. I. Stevenson, R. W. Carling, R. Baker,
G. R. Marshall, J. A. Kemp, A. C. Foster, S. Grinwood, R. Hargreaves, C. Hurley, K. L. Saywell,
M. D. Tricklebank, and P. D. Leeson, J. Med. Chem., 40, 4053 (1997).
I. V. Ukrainets, P. A. Bezuglyi, N. Skaif, O. V. Gorokhova, and L. V. Sidorenko, Zh. Org. Farm. Khim.,
2, Part 1, (2004).
5.
6.
N. A. Jaradat, Dissertation for Candidate of Pharmaceutical Sciences, Kharkov (2000).
H. Gunther, NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry, John Wiley
& Sons, Chichester (1995).
7.
I. V. Ukrainets, O. V. Gorokhova, S. G. Taran, P. A. Bezuglyi, A. V. Turov, N. A. Marusenko, and
O. A. Evtifeeva, Khim. Geterotsikl. Soedin., 958 (1994).
8.
9.
10.
W. Stadlbauer and T. Kappe, Monatsh. Chem., 113, 751 (1982).
W. Stadlbauer and T. Kappe, Bull. Slov. Chem. Soc. (Vestn. Slov. Kem. Drus), 33, 271 (1986).
I. V. Ukrainets, E. A. Taran, O. V. Shishkin, O. V. Gorokhova, S. G. Taran, N. A. Dzharadat, and
A. V. Turov, Khim. Geterotsikl. Soedin., 516 (2000).
11.
12.
I. V. Ukrainets, Dissertation for Doctor of Chemical Sciences, Kharkov (1992).
I. V. Ukrainets, S. G. Taran, O. V. Gorokhova, I. V. Gorlacheva, P. A. Bezuglyi, and A. V. Turov, Khim.
Geterotsikl. Soedin., 1104 (1996).
13.
P. A. Bezugly, I. V. Ukrainets, Skaif Nicola, O. V. Gorokhova, L. V. Sidorenko, Pharmacom, No. 3, 23
(2003).
14.
15.
16.
17.
18.
19.
P. Roschger, W. Fiala, and W. Stadlbauer, J. Heterocycl. Chem., 29, 225 (1992).
A. Marinetti, P. Hubert, and J.-P.Genet, Eur. J. Org. Chem., 1815 (2000).
P. Kowalski, Z. Majka, and T. Kowalska, Khim. Geterotsikl. Soedin., 845 (1998).
M. Pawlowski and M. Gorczyca, Pol. J. Chem., 55, 837 (1981).
N. M. Howarth, J. R. Malpass, and C. R. Smith, Tetrahedron, 54, 10899, (1998).
H. Suzuki, A. Tsukuda, M. Kondo, M. Aizawa, Y. Senoo, N. Megumi, W. Toshiko, Y. Yuusaku, and
M. Yasuoki, Tetrahedron Lett., 36, 1671 (1995).
20.
P. Q. Huang, X. Zheng, S. L. Wang, J. L. Ye, and L. R. Jin, Tetrahedron Asymmetry, 10, 3309 (1999).
1156