H. Yorimitsu, A. Osuka et al.
Yorimitsu, A. Osuka, Asian J. Org. Chem. 2013, 2, 356; o) J. Song,
N. Aratani, H. Shinokubo, A. Osuka, J. Am. Chem. Soc. 2010, 132,
16356; p) J. Song, N. Aratani, J. H. Heo, D. Kim, H. Shinokubo, A.
Osuka, J. Am. Chem. Soc. 2010, 132, 11868.
survive the harsh conditions. The methodology described
herein is a much milder method for converting metalated
porphyrins to free-base porphyrins.
[4] J. K. M. Sanders, N. Bampos, Z. Clyde-Watson, S. L. Darling, J. C.
Hawley, H.-J. Kim, C. C. Mak, S. J. Webb, The Porphyrin Handbook,
Vol. 6, (Eds : K. M. Kadish, K. M. Smith, R. Guilard), Academic
Press, San Diego, 2000, Chapter 15.
[5] a) Y. Kawamata, S. Tokuji, H. Yorimitsu, A. Osuka, Angew. Chem.
Yamamoto, S. Tokuji, T. Tanaka, H. Yorimitsu, A. Osuka, Asian J.
Org. Chem. 2013, 2, 320; d) S. Anabuki, S. Tokuji, N. Aratani, A.
[6] Preparation of magnesium porphyrins: a) J. S. Lindsey, J. N. Wood-
[7] Only one report of demetalation/magnesiation reactions was pub-
lished on iron porphyrins: C. E. Castro, D. Kishore, J. Organomet.
Experimental Section
The transformation in equation 1 is representative. Nickel porphyrin 1Ni
(56 mg, 0.05 mmol) was placed in a 10 mL Schlenk flask. The flask was
filled with nitrogen. Toluene (2 mL) was added to the flask. To the tol-
uene solution, 4-methylphenylmagnesium bromide (0.5 mL, 0.5 mmol, 1m
THF solution) was then added. The mixture was stirred at 258C for 4 h.
The reaction was quenched with 1m HCl aq. (0.5 mL) (note that attempts
to directly demagnesiate the intermediary porphyrin by addition of a
large excess of HCl always resulted in partial demagnesiation—without
the first addition of HCl, workup was complicated) and extracted with di-
chloromethane (5 mL) three times. The combined organic layer was
washed with brine and then dried over Na2SO4. After evaporation, the
crude solids were dissolved in dichloromethane (5 mL). To the solution,
1m HCl aq. was added and the resulting mixture was vigorously stirred at
258C. The reaction was monitored by TLC to complete the reaction in
4 h. The organic layer was separated from the aqueous layer and neutral-
ized by sat. aq. NaHCO3. The organic solution was then evaporated and
purified by silica-gel column chromatography to provide 1FB in 91%
yield (48 mg, 0.046 mmol).
[8] Selected examples on the reaction of nickel porphyrins with
Grignard reagents without denickelation/magnesiation: a) K.
b) K. Yoshida, S. Yamaguchi, A. Osuka, H. Shinokubo, Organome-
Acknowledgements
[9] Selected very recent examples of synthesizing functionalized por-
phyrins with organolithium: a) M. O. Senge, C. Ryppa, M. Fazekas,
Senge, M. Fazekas, M. Pintea, M. Zawadzka, W. J. Blau, Eur. J. Org.
L. A. Padilha, D. Peceli, H. Hu, G. Nootz, S.-J. Chung, S. Ohira,
J. D. Matichak, O. V. Przhonska, A. D. Kachkovski, S. Barlow, J.-L.
Brꢁdas, H. L. Anderson, D. J. Hagan, E. W. V. Stryland, S. R.
This work was supported by Grants-in-Aid from MEXT (nos. 22245006
(A), 20108006 “pi-Space”, 24685007, and 22406721 “Reaction Integra-
tion”). K.M. acknowledges JSPS Fellowships for Young Scientists. H.Y.
thanks the Kinki Invention Center for financial support.
Keywords: demetalation · Grignard reaction · magnesium ·
nickel · porphyrinoids
[10] Denickelation/lithiation of nickel porphyrins using large excess
amounts of lithium metal with ethylenediamine was reported: U.
[11] Fine particles of nickel metals were likely to be formed and were
easily separated by filtration through a pad of silica-gel.
[12] The reaction of 1Ni with phenylmagnesium bromide at 808C for 4 h
afforded 35% of 1Mg and no 1Ni was recovered.
[13] Senge reported that a demetalation reaction happened when zinc
porphyrin was treated with butyllithium: O. B. Locos, K. Dahms,
[14] Zinc porphyrin 1Zn was much more reactive and less nucleophilic
phenylmagnesium bromide could be employed to afford 1Mg in
95% yield.
[15] Reductive demetalation of silver and copper porphyrins by NaBH4
has been reported, while examples were limited to octaethylpor-
phyrin and its derivatives: a) J. P. Collman, C. S. Bencosme, R. R.
Durand, Jr., R. P. Kreh, F. C. Anson, J. Am. Chem. Soc. 1983, 105,
2699; b) J. A. Cowan, J. K. M. Sanders, Tetrahedron Lett. 1986, 27,
1201.
[16] Single electron transfer from the Grignard reagent is also a possible
pathway as proposed in ref. [7].
[17] a) W. Kaschube, K. R. Pçrschke, K. Angermund, C. Krꢂger, G.
[1] a) Handbook of Porphyrin Science, Vols. 1–10 (Eds: K. M. Kadish,
K. M. Smith, R. Guilard), World Scientific Publishing, Singapore,
2010; b) Handbook of Porphyrin Science, Vols. 11–15 (Eds: K. M.
Kadish, K. M. Smith, R. Guilard), World Scientific Publishing, Sin-
gapore, 2011; c) Handbook of Porphyrin Science, Vols. 16–25 (Eds:
K. M. Kadish, K. M. Smith, R. Guilard), World Scientific Publishing,
Singapore, 2012; d) The Porphyrin Handbook, Vols. 1–10 (Eds:
K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, San
Diego, 2000; e) Handbook of Porphyrin Science, Vols. 11–20 (Eds:
K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, San
Diego, 2003; f) D. Dolphin, The Porphyrins, Vols. 1 and 2, Academic
Press, New York, 1979.
[2] a) M. O. Senge, Chem. Commun. 2011, 47, 1943; b) S. Horn, K.
Dahms, M. O. Senge, J. Porphyrins Phthalocyanines 2008, 12, 1053;
c) M. O. Senge, Acc. Chem. Res. 2005, 38, 733; d) H. Shinokubo, A.
Osuka, Chem. Commun. 2009, 1011; e) T. Ren, Chem. Rev. 2008,
108, 4185; f) B. M. J. M. Suijkerbuijk, R. J. M. Klein Gebbink,
Angew. Chem. 2008, 120, 7506; Angew. Chem. Int. Ed. 2008, 47,
7396; g) F. Atefi, D. P. Arnold, J. Porphyrins Phthalocyanines 2008,
12, 801; h) M. G. H. Vicente, K. M. Smith, J. Porphyrins Phthalocya-
nines 2004, 8, 26; i) W. M. Sharman, J. E. van Lier, J. Porphyrins
Phthalocyanines 2000, 4, 441; j) J. Setsune, J. Porphyrins Phthalocya-
nines 2004, 8, 93; k) S. Fox, R. W. Boyle, Tetrahedron 2006, 62,
10039; l) A. M. V. M. Pereira, S. Richeter, C. Jeandon, J.-P. Gissel-
brecht, J. Wytko, R. Ruppert, J. Porphyrins Phthalocyanines 2012,
16, 464; m) A. Satake, J. Synth. Org. Chem. Jpn. 2007, 65, 298; n) H.
Received: March 26, 2013
Published online: June 5, 2013
9126
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2013, 19, 9123 – 9126