468
J. Am. Chem. Soc. 1999, 121, 468-469
n-Pentenyl Glycosyl Orthoesters as Versatile
Intermediates in Oligosaccharide Synthesis. The
Proteoglycan Linkage Region1
John G. Allen†,2 and Bert Fraser-Reid*,‡
Department of Chemistry
Paul M. Gross Chemical Laboratories
Duke UniVersity, Durham, North Carolina 27708
Natural Products and Glycotechnology Research Institute, Inc.
4118 Swarthmore Road, Durham, North Carolina 27707
ReceiVed September 10, 1998
Proteoglycans3 are biologically ubiquitous highly glycosylated
glycoprotein conjugates with widely varying roles in structure4
(as in cartilage and tendons), lubrication5 (as in synovial fluid
and “Wharton’s jelly” of the placenta), blood anticoagulation,6
and light transmission through the cornea.7 Not surprisingly,
aberrations in proteoglycan metabolism can therefore have serious
consequences, leading to diseases such as rheumatoid arthritis
and cystic fibrosis.8
Figure 1. Schematic representation of a proteoglycan (1) and synthetic
linkage region construct (2).
Scheme 1
In view of their implication in such disabling disorders, interest
in proteoglycan biosynthesis has been heightened.9 Some recent
findings can be interpreted with the aid of the schematic construct
1 (Figure 1). Several different proteoglycans have in common a
highly conserved7 tetrasaccharide linkage region joining a
glycosaminoglycan (GAG) group to a core protein through entities
Y and Z. Unit Y is either serine or threonine, the xylose-serine
bond being unique in that it does not occur in other mammalian
glycoconjugates. Unit Z is GlcNAc or GalNAc,10 a critical
differentiation representing the point at which the biosynthetic
routes to glucosaminoglycans (such as heparin) and galactosami-
noglycans (such as dermatan and chondroitin sulfates) diverge.11
Recent studies by Esko11 and others12 have identified the core
protein as a regulatory factor in this biosynthetic outcome. A
tetraglycosylserine corresponding to the linkage region, and
suitably protected as in 2, is therefore of interest, since the serine
moiety allows for specific elaboration of the core protein in either
direction. In this communication we describe a synthesis13 of the
required tetrasaccharide and its direct coupling to give 2 that draws
heavily upon the chemistry of n-pentenyl donors.14
Recent studies in our laboratory have shown that n-pentenyl
orthoesters can be valuable synthetic intermediates, stemming
from their ability to undergo rearrangement to n-pentenyl gly-
cosides (NPGs) under mild conditions, thereby enabling a given
precursor to serve as a donor (e.g., 3 or 4; Scheme 1) or an
acceptor (e.g., 5).15 Orthoester formation during coupling reac-
tions, on the other hand, is an unwelcome occurrence common
to glycosyl donors of uronic acids.16 Thus, whereas 2-O-acyl
hexoses such as 6a react routinely to give 1,2-trans-products such
as 7, the uronate counterpart 6b may give an orthoester 8 as the
major product under similar conditions. Accordingly, our studies
were prompted, in part, by challenges facing the glucuronate
component of the target 2.
Retrosynthesis leads to the coupling partners 9-12 shown in
Scheme 2 and reflects insights we have gained from exploratory
experiments. Thus, the uronate retron 9 was equipped with a
trichloroacetimidate activating group so as to permit orthogonal
coupling to the NPG 10c.17 Often orthoester formation is obviated
by use of a pivaloyl protecting group at O2;16f,18 however, we
chose benzoyl19 for the case at hand to ensure â-selectivity, as
well as easier removal in the future. A convergent route bringing
together the GlcUA-Gal and Gal-Xyl disaccharides would save
steps and allow the galactoside residue 10 to serve twice.
Furthermore, the labile xylose-serine bond would be formed last.
† Duke University.
‡ Natural Products and Glycotechnology (NPG) Research Institute, Inc.
(1) Supported by NIH grants to B.F.-R. (AI-31862 and GM-40171) and a
Glaxo-Wellcome Fund Fellowship to J. G. A.
(2) From the Ph.D. Dissertation of J. G. A., Duke University, May 1998.
(3) Functions of the Proteoglycans; Everd, D., Whelan, J., Eds.; Wiley:
New York, 1986. Proteoglycans; Jolle´s, P., Ed.; Birkha¨user Verlag: Basel,
Switzerland, 1994.
(4) Hukins, D. W. L. Tissue components. In ConnectiVe Tissue Matrix;
Hukins, D. W. L., Ed.; Verlag: Basel, Switzerland, 1984; p 1.
(5) Burton, A. F. Amino Sugars. Quest for Health Series; 1990.
(6) (a) Hirsh, J.; Levine, M. N. Blood 1992, 79, 1-17. (b) Sie, P.; Dupouy,
D.; Caranobe, C.; Petitou, M.; Boneu, B. Blood 1993, 81, 1771-1777.
(7) Rode´n, L. In The Biochemistry of Glycoproteins and Proteoglycans;
Lannarz, W. J., Ed.; Plenum: New York, 1980; p 267.
(8) Di Sant’Agnese, P. A.; Davis, P. B. New Engl. J. Med. 1976, 295,
597.
(9) (a) Prehm, P. Biochem. J. 1983, 211, 181. (b) Hascall, V. C.
Introduction. In Functions of the proteoglycans; Evered, D., Whelan, J., Eds.;
Wiley: New York, 1986; p 1.
(10) Fedarko, N. S. Isolation and purification of proteoglycans. In Pro-
teoglycans; Jolle`s, P., Ed.; Birkha¨user Verlag: Basel, Switzerland, 1994; p 9.
(11) (a) Zhang, L.; Esko, J. D. J. Biol. Chem. 1994, 269, 19295. (b) Zhang,
L.; David, G.; Esko, J. D. J. Biol. Chem. 1995, 270, 27127. (c) Lidholt, K.;
Weinke, J. L.; Kiser, C. S.; Lugemwa, F. M.; Bame, K. J.; Cheifetz, K. J.;
Massague´, J.; Lindahl, U.; Esko, J. D. Proc. Natl. Acad. Sci. U.S.A. 1992, 89,
2267.
(12) (a) Segarini, P. R., Seyedi, S. M. J. Biol. Chem. 1988, 263, 8366. (b)
Cheifetz, S.; Massague´, J. J. Biol. Chem. 1989, 264, 12025. (c) Andres, J. L.;
Ronnstrand, L.; Cheifetz, S.; Massague´, J. J. Biol. Chem. 1991, 266, 23282.
(13) For some examples, see: (a) Goto, F.; Ogawa, T. Tetrahedron Lett.
1992, 33, 5099. (b) Rio, S.; Beau, J.-M.; Jacquinet, J.-C. Carbohydr. Res.
1993, 244, 295. (c) Rio, S.; Beau, J.-M.; Jacquinet, J.-C. Carbohydr. Res.
1991, 219, 71. (d) Garegg, P. J.; Lindberg, B.; Norberg, T. Acta Chem. Scand.
B 1979, 33, 449. (e) Ekborg, G.; Curenton, T.; Krishna, N. R.; Rode´n, L. J.
Carbohydr. Chem. 1990, 9, 15. (f) Nilsson, M.; Westman, J.; Svahn, C.-M. J.
Carbohydr. Res. 1993, 12, 23.
(14) Fraser-Reid, B.; Udodong, U. E.; Wu, Z.; Ottosson, H.; Merritt, J.
R.; Rao, C. S.; Roberts, C.; Madsen R. Synlett 1992, 927.
(15) Roberts, C.; Madsen, R.; Fraser-Reid, B. J. Am. Chem. Soc. 1995,
117, 1546.
(16) (a) Ramu, K.; Baker, J. K. J. Med. Chem. 1995, 38, 1911. (b) Kanaoka,
M.; Kato, H.; Yano, S. Chem. Pharm. Bull. 1990, 38, 221. (c) Mattox, B. R.;
Goodrich, J. E.; Nelson, A. N. Steroids 1982, 40, 23. (d) Marra, A.; Bond,
X.; Fetitou, M.; Sinay, P. Carbohydr. Res. 1989, 195, 39. (e) Hashimoto, S.;
Sano, A.; Umeo, K.; Nakajima, M.; Ikegani, S. Chem. Pharm. Bull. 1995,
43, 2267. (f) van Boeckel, C. A. A.; Delbressine, L. P. C.; Kaspersen, F. M.
Recl. TraV. Chim. Pays-Bas 1985, 104, 259.
(17) This compound previously prepared: Udodong, U. E.; Rao, C. S.;
Fraser-Reid, B. Tetrahedron 1992, 48, 4713.
(18) (a) Vlahov, J.; Snatzke, G. Liebigs Ann. Chem. 1983, 570. (b) Garegg,
P. J.; Olsson, L.; Oscarson, S. J. Org. Chem. 1995, 60, 2200.
(19) (a) Arsequell, G.; Sarries, N.; Valencia, G. Tetrahedron Lett. 1995,
36, 7323. (b) Tabeur, C.; Machetto, F.; Mallet, J.-M.; Duchaussoy, P.; Petitou,
M.; Sinay, P. Carbohydr. Res. 1996, 281, 253. (c) Garegg., P. J.; Olsson, L.;
Oscarson, S. Bioorg. Med. Chem. 1996, 4, 1867. (d) Isogai, Y.; Kawase, T.;
Ishida, H.; Kiso, M.; Hasegawa, A. J. Carbohydr. Chem. 1996, 15, 1001.
10.1021/ja9832358 CCC: $18.00 © 1999 American Chemical Society
Published on Web 01/05/1999