COMMUNICATIONS
Keywords: alkynes
reactions ´ rearrangements
´ allenes ´ butadienes ´ pericyclic
An Iron(iii) ± Catechol Complex as a Mushroom
Pigment**
Franz von Nussbaum, Peter Spiteller, Matthias Rüth,
Wolfgang Steglich,* Gerhard Wanner, Brandy
Gamblin, Lorenzo Stievano, and Friedrich E. Wagner
[1] K. Banert, S. Groth, Angew. Chem. 1992, 104, 865 ± 867; Angew. Chem.
Int. Ed. Engl. 1992, 31, 866 ± 868.
[2] K. Banert, H. Hückstädt, K. Vrobel, Angew. Chem. 1992, 104, 72 ± 74;
Angew. Chem. Int. Ed. Engl. 1992, 31, 90 ± 92; K. Banert, S. Groth, H.
Hückstädt, K. Vrobel, Phosphorus Sulfur Silicon Relat. Elem. 1994,
95 ± 96, 323 ± 324.
Dedicated to Prof. Heinrich Nöth
on the occasion of his 70th birthday
[3] K. Banert, C. Toth, Angew. Chem. 1995, 107, 1776 ± 1778; Angew.
Chem. Int. Ed. Engl. 1995, 34, 1627 ± 1629.
Cortinarius violaceus [(L.: Fr.) S. F. Gray][1] is a spectacular
mushroom well known for its dark blue-violet color and its
cedar-wood-like smell. Fries[2] described this type species of
the genus Cortinarius as ªspecies nobilissima, pulcherrimaº.
Previous efforts to examine the chemical nature of the violet
pigment failed because of its instability and polarity. The dark
violet water extracts of fresh or freeze-dried fruit bodies
became dark brown within minutes. We were able to suppress
this decomposition by exhaustive extraction of the lyophilized
mushrooms with methanol prior to the water extraction. After
freeze-drying the resulting aqueous solution, the residue was
purified by chromatography on a Sephadex LH-20 column
with methanol/water (1/1). This procedure enabled us to
enrich the highly sensitive pigment. The pigmentꢁs NMR
spectra were inconclusive due to strong signal broadening by
paramagnetic iron, which can be detected both in the extract
and the mushrooms. Since the intensity of the violet color
correlates with the concentration of iron, the presence of an
iron complex as the coloring principle seems obvious.
[4] H. Priebe, Angew. Chem. 1984, 96, 728 ± 729; Angew. Chem. Int. Ed.
Engl. 1984, 23, 736 ± 737; K. Banert, Tetrahedron Lett. 1985, 26, 5261 ±
5264; Chem. Ber. 1987, 120, 1891 ± 1896; K. Banert, M. Hagedorn,
Angew. Chem. 1989, 101, 1710 ± 1711; Angew. Chem. Int. Ed. Engl.
1989, 28, 1675 ± 1676.
[5] B. Müller, Diplomarbeit, Technische Universität Chemnitz, 1997.
[6] A. Günther, Dissertation, Technische Universität Chemnitz, not yet
published.
[7] Y. Ishino, I. Nishiguchi, M. Kim, T. Hirashima, Synthesis 1982, 740 ±
742; A. Srikrishna, S. Nagaraju, J. Chem. Soc. Perkin Trans. 1 1992,
311 ± 312.
[8] H. Hopf, R. Kirsch, Tetrahedron Lett. 1985, 26, 3327 ± 3330.
[9] T. Pollok, H. Schmidbaur, Tetrahedron Lett. 1987, 28, 1085 ± 1088;
R. Y. Chen, B. Z. Cai, K. S. Feng, Chin. Chem. Lett. 1992, 3, 157 ± 158.
Â
[10] M. Huche, P. Cresson, Bull. Soc. Chim. Fr. 1975, 3 ± 4, 800 ± 804; M.
Â
Huche, P. Cresson, Tetrahedron Lett. 1973, 4291 ± 4292.
[11] G. Smith, C. J. M. Stirling, J. Chem. Soc. C 1971, 1530 ± 1535.
[12] S. Jeganathan, W. H. Okamura, Tetrahedron Lett. 1982, 23, 4763 ±
4764.
[13] a) R. Lespieau, Bull. Soc. Chim. Fr. 1928, 43, 199 ± 210; b) V. A.
Engelhardt, J. E. Castle, J. Am. Chem. Soc. 1953, 75, 1734; c) D. Miller,
J. Chem. Soc. C 1969, 12 ± 15; d) S. Holand, R. Epsztein, I. Marszak,
Bull. Soc. Chim. Fr. 1969, 3213 ± 3218; e) H. P. Figeys, M. Gelbcke,
Tetrahedron Lett. 1970, 5139 ± 5142; f) K. S. Jeong, P. Sjö, K. B.
Sharpless, Tetrahedron Lett. 1992, 33, 3833 ± 3836.
Energy dispersive X-ray analysis[3] (EDX), atomic absorp-
tion spectroscopy[4] (AAS), and the thiocyanate test indicated
that C. violaceus is capable of accumulating iron in a unique
manner. The amount of iron in the mushroom is 4.5 ±
[14] For the conditions of the flash vacuum pyrolysis, see Scheme 2 and
refs. [2, 3].
1
7.5 mg g (dry weight), which is about 100 times the average
[15] The geometrical isomers are assigned on the basis of 1H and 13C NMR
investigations (including homonuclear NOE difference spectra,
studies with lanthanide shift reagents, 3J(31P, 1H) data, comparisons
with ethene-1,2-diyl compounds analogously substituted). The con-
figurations of the C ± C double bonds can also be verified by
comparison of the rates of the Diels ± Alder reactions, with the rates
being higher for (Z)-12a, (Z)-14aa ± e, (E)-26, (E)-28, and (E)-31,
respectively. The X-ray crystal structure analysis of the unlike isomer
of 16ba was performed. We thank Prof. Dr. H.-J. Deiseroth and Dr. L.
Kienle, Universität-GH Siegen, for this investigation.
1
value of 0.06 mgg determined for other basidiomycetes.[5, 6]
The Mössbauer spectra[7] (Figures 1 and 2, Table 1) show that
the iron in the pigment is trivalent, and the ESR spectra[8]
indicate a high-spin FeIII complex.[9] The spectra of the freeze-
dried mushrooms and the water extracts are identical.
After addition of aqueous HCl to the enriched pigment (R)-
b-dopa ((R)-3) can be identified as the complex ligand.[10]
Chromatographic workup of the methanol extracts followed
by recrystallization yields the analytically pure amino acid.
The (R)-b-dopa amounts to 2% of the dry weight of the
mushroom. b-Dopa is a new natural product that has been
synthesized only as the racemate before.[11] We obtained
[16] H. Staudinger, J. Siegward, Helv. Chim. Acta 1920, 3, 824 ± 833.
[17] A. G. M. Barrett, D. Dhanak, G. G. Graboski, S. J. Taylor, Org. Synth.
Coll. Vol. 1993, 8, 550 ± 553.
[18] F. Kurzer, Org. Synth. Coll. Vol. 1963, 4, 937 ± 939.
[19] K. Banert, Chem. Ber. 1989, 122, 1963 ± 1967.
[20] F. Sondheimer, N. Stjernström, D. Rosenthal, J. Org. Chem. 1959, 24,
1280 ± 1284.
[21] Alternative preparation of 23: T. G. Back, E. K. Y. Lai, K. R.
Muralidharan, J. Org. Chem. 1990, 55, 4595 ± 4602.
[*] Prof. Dr. W. Steglich, Dipl.-Chem. F. von Nussbaum,
Dipl.-Chem. P. Spiteller, Dipl.-Chem. M. Rüth
Institut für Organische Chemie der Universität
Karlstrasse 23, D-80333 München (Germany)
Fax : ( 49)89-5902-604
[22] Synthesis from ethynylmagnesium bromide and 4-pentenal, 59%;
alternative preparation of 25a: D. Seebach, A. K. Beck, B. Schmidt,
Y. M. Wang, Tetrahedron 1994, 50, 4363 ± 4384.
Prof. Dr. G. Wanner
Botanisches Institut der Universität München (Germany)
B. Gamblin, Dipl.-Chem. Lorenzo Stievano, Prof. Dr. F. E. Wagner
Physik-Department E15 der Technischen Universität München,
Garching (Germany)
[**] This work was supported by the Deutsche Forschungsgemeinschaft
(SFB 369). We thank H. Hartl for the AAS measurements, G. Sturm
for ESR spectra, and Prof. Dr. M. Spiteller for ESI-MS and APCI-MS
investigations.
3292
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3723-3292 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1998, 37, No. 23