10.1002/anie.201811522
Angewandte Chemie International Edition
COMMUNICATION
efficient route to D-labeled nitrogen-containing heterocycle
compounds, such as quinazolines (12) and quinolines (13).
Acknowledgements
We gratefully acknowledge National Natural Science Foundation
of China (21702098, 21672099, 21732003 and 21703118), the
Fundamental Research Funds for the Central Universities (No.
020514380158, 020514380131), Shandong Provincial Natural
Science Foundation (No. ZR2017MB038), “1000-Youth Talents
Plan” and start-up funds from Nanjing University for financial
support. M. Zhang was supported by Nanjing University
Innovation and Creative Program for PhD candidate (NO.
CXCY17-19).
Keywords: carboxylic acids • aldehydes • deuteration •
deoxygenation • synergistic catalysis
[1]
[2]
a) J. Helfenbein, C. Lartigue, E. Noirault, E. Azim, J. Legailliard, M. J.
Galmier, J. C. Madelmont, J. Med. Chem. 2002, 45, 5806; b) C. S.
Elmore, R. A. Bragg, Bioorg. Med. Chem. Lett. 2015, 25, 167.
a) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int. Ed. 2018,
57, 3022; b) E. M. Simmons, J. F. Hartwig, Angew. Chem. Int. Ed. 2012,
51, 3066.
Scheme 4. Downstream transformations. See Supporting Information for
detailed reaction conditions.
[3]
[4]
S. E. Scheppele, Chem. Rev. 1972, 72, 511.
a) L. S. Busenlehner, R. S. Armstrong, Arch. Biochem. Biophys. 2005,
433, 34; b) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem.
Int. Ed. 2007, 46, 7744-7765.
The mild reduction of carboxylic acids to aldehydes is one of
the most important and challenging functional group conversions
in organic synthesis. [25] Under the optimized conditions, and just
replacing D2O with H2O,[26] our synergistic deoxygenation can
serve as a powerful and general strategy for selective reduction
of carboxylic acids to aldehydes under mild conditions, keeping a
good selectivity and functional group compatibility (Scheme 5).
[5]
a) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int. Ed. 2018,
57, 1758; b) Y. Zhu, J. Zhou, B. Jiao, ACS Med. Chem. Lett. 2013, 4,
349; c) A. Katsnelson, Nat. Med. 2013, 19, 656; d) A. Mullard, Nat. Rev.
Drug Discov. 2016, 15, 219.
[6]
[7]
C. Schmidt, Nat. Biotechnol. 2017, 35, 493.
Selected deuteration and tritiation examples, see: a) L. V. A. Hale, N. K.
Szymczak, J. Am. Chem. Soc. 2016, 138, 13489; b) J. L. Koniarczyk, D.
Hesk, A. Overgard, I. W. Davies, A. McNally, J. Am. Chem. Soc. 2018,
140, 1990; c) X. Wang, M. H. Zhu, D. P. Schuman, D. Zhong, W. Y. Wang,
L. Y. Wu, W. Liu, B. M. Stoltz, W.-B. Liu, J. Am. Chem. Soc. 2018, 140,
10970; d) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int.
Ed. 2018, 57, 3022; e) H. M. Xia, F. L. Zhang, T. Ye, Y. F. Wang, Angew.
Chem. Int. Ed. 2018, 57, 11770; f) C. Liu, Z. Chen, C. Su, X. Zhao, Q.
Gao, G. H. Ning, H. Zhu, W. Tang, K. Leng, W. Fu, B. Tian, X. Peng, J.
Li, Q.-H. Xu, W. Zhou, K. P. Loh, Nat. Commun. 2018, 9, 80; g) R. P. Yu,
D. Hesk, N. Rivera, I. Pelczer, P. J. Chirik, Nature 2016, 529, 195.
Recent examples: a) H. Wang, X. J. Dai, C. J. Li, Nat. Chem. 2017, 9,
374-378; b) C. Min, Y. Lin, D. Seidel, Angew. Chem. Int. Ed. 2017, 56,
15353; c) M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping,
Angew. Chem. Int. Ed. 2015, 54, 8828.
Scheme 5. Selective transformation of carboxylic acids to aldehydes.
[8]
[9]
To gain insight into the mechanism of this reaction, we
performed radical inhibitor experiments by addition of 2,2,6,6-
tetramethyl-1-piperidyloxy (TEMPO) and 2,6-di-tert-butyl-p-cresol
(BHT) into the model reaction (see SI for details). Both these
radical traps completely inhibit the deoxygenative deuteration,
suggesting the possibility of a radical process. The trapping of
acyl radicals by TEMPO further supports this claim. The 18O-
labeling experiments demonstrate that the oxygen atom in
triphenylphosphine oxide comes from carboxylate group rather
than from H2O (see SI for details). Accordingly, the proposed
mechanism in Scheme 2 is a promising candidate.
M. Y. S. Ibrahim, S. E. Denmark, Angew. Chem. Int. Ed. 2018, 57, 10362.
[10] a) W. J. Kerr, M. Reid, T. Tuttle, Angew. Chem. Int. Ed. 2017, 56, 7808;
b) E. S. Isbrandt, J. K. Vandavasi, W. Zhang, M. P. Jamshidi, S. G.
Newman, Synlett 2017, 28, 2851.
[11] a) J. T. Spletstoser, J. M. White, A. R. Tunoori, G. I. Georg, J. Am. Chem.
Soc. 2007, 129, 3408; b) H. V. Adcock, E. Chatzopoulou, P. W. Davies,
Angew. Chem. Int. Ed. 2015, 54, 15525; c) E. P. K. Olsen, T. Singh, P.
Harris, P. G. Andersson, R. Madsen, J. Am. Chem. Soc. 2015, 137, 834.
[12] M. Zhang, J. Xie, C. Zhu, Nat. Commun. 2018, 9, 3517.
In conclusion, we have developed the first deoxygenative
deuteration of both aromatic and aliphatic carboxylic acids with
D2O as an inexpensive deuterium source by synergistic
photoredox catalysis, organocatalysis and phosphoranyl radical
chemistry. A wide arrange of deuterated aldehydes are obtained
in moderate to good yields with high D-incorporation. This
reaction also provides a simple and promising reduction means of
carboxylic acids to aldehydes using H2O as a medium.
[13] B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon,
K. A. Peterson, Y. Song, X. Qian, C.-Y. Ng, J. Liu, W. Chen, D. W.
Schwenke, J. Phys. Chem. A 2002, 106, 2727.
[14] a) Y. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S. L. Colletti,
I. W. Davies, D. W. C. MacMillan, Science 2017, 358, 1182; b) V. Soulard,
G. Villa, D. P. Vollmar, P. Renaud, J. Am. Chem. Soc. 2018, 140, 155.
[15] a) N. Zhou, X.-A. Yuan, Y. Zhao, J. Xie, C. Zhu, Angew. Chem. Int. Ed.
2018, 57, 3990; b) W. Xu, J. Ma, X.-A. Yuan, J. Dai, J. Xie, C. Zhu, Angew.
Chem. Int. Ed. 2018, 57, 10357; c) J. Xie, K. Sekine, S. Witzel, P. Kramer,
This article is protected by copyright. All rights reserved.