+2.9 (c 1.1, CHCl3); lit.,16b +2.53 (c 1.67, CHCl3); lit.,16c +2.9 (c 1.28,
CHCl3).
C-1 in 8b (OTBDMS?OBn), ozonolysis was carried out to
yield ketone 10, which upon reduction (BH3·SMe2) gave, in a
stereoselective manner, the highly functionalized cyclohexane
11 (J5a,1 = 3.8 Hz) (75%, three steps). The hydroxy function at
C-5a was deoxygenated under radical conditions, via its
-mannopyranoside derivative
12 (85%, two steps). Hydrolysis of the acetals followed by
1 T. Suami and S. Ogawa, Adv. Carbohydr. Chem. Biochem., 1990, 48,
21.
2 G. E. McCasland, S. Furuta and L. J. Durham, J. Org. Chem., 1966, 31,
1516; 1968, 33, 2835; 1968, 33, 2841.
3 T. Iwasa, H. Yamamoto and M. Shibata, J. Antibiot., 1970, 32, 595;
T. W. Miller, B. H. Arison and G. Albers-Schonberg, Biotechnol.
Bioeng., 1973, 15, 1075.
4 S. Ogawa, in Carbohydrate Mimics: Concepts and Methods, ed. Y.
Chapleur, Wiley-VCH, Weinheim, 1998, p. 87; S. Ogawa, in Carbohy-
drates in Drug Design, ed. Z. J. Witczak and K. A. Nieforth, Marcel
Dekker, New York, 1997, p. 433; T. Suami Top. Curr. Chem., 1990,
154, 257 and references cited therein.
xanthate,14,15 to afford 5a-carba-
D
hydrogenation and acetylation gave 5a-carba-b-
pentaacetate 1316¶ (87%, three steps).
D-mannose
In our opinion, several aspects of the synthetic scheme
deserve further comment: (i) the choice of a 2,3:4,6-diacetonide
derivative has reduced the protecting group manipulations in the
synthetic scheme to a minimum; (ii) the selection of a
phenylacetylide as the radical acceptor was made on the basis of
the beneficial effects of the phenyl group in alkyne cycliza-
tions;17,18 (iii) unlike other approaches to carba-sugars from
carbohydrates,8,9 in this synthetic scheme an hexose is corre-
lated with its corresponding carba-pyranoside; (iv) the present
method permits access to fully functionalized cyclohexanes
(e.g. 11) of potential interest in the synthesis of biologically
active compounds;4 (v) by changing the protecting group of the
hydroxy function a to the radical acceptor some stereocontrol
has been attained in the cyclization reaction in favor of the
isomer with trans 6,6-ring fusion19 (8, Scheme 2); (vi) similar
chemistry carried out on 9a or 9b would allow access to 5a-
5 S. Ogawa, in Studies in Natural Products Chemistry, ed. A-U Rahman,
Elsevier Science, 1993, vol. 13, p. 187; T. Suami, Pure Appl. Chem.,
1987, 59, 1509.
6 A. V. R. L. Sudha and M. Nagarajan, Chem. Commun., 1998, 925; R.
Angelaud and Y. Landais, Tetrahedron Lett., 1997, 38, 8841; R.
Verduyn, S. H. van Leeuwen, G. A. van der Marel and J. H. van Boom,
Recl. Trav. Chim. Pays-Bas, 1996, 115, 67; H. A. J. Carless and S. S.
Malik, J. Chem. Soc., Chem. Commun., 1995, 2447; D. A. Entwistle and
T. Hudlicky, Tetrahedron Lett., 1995, 36, 2591; L. Pingli and M.
Vandewalle, Synlett, 1994, 228; M. Yoshikawa, N. Murakami, Y.
Yokokawa, Y. Inoue, Y. Kuroda and I. Kitagawa, Tetrahedron, 1994,
50, 9619; D. S. Larsen, N. S. Trotter and R. J. Stoodley, Tetrahedron
Lett., 1993, 34, 8151; T. K. M. Shing, Y-X Cui and Y. Tang,
Tetrahedron, 1992, 48, 2349; J. L. Aceña, O. Arjona, R. Fernández de
la Pradilla, J. Plumet and A. Viso, J. Org. Chem., 1992, 57, 1945; S. V.
Ley and L. L. Yeung, Synlett, 1992, 291; S. Cai, M. R. Stroud, S.
Hakomori and T. Toyokuni, J. Org. Chem., 1992, 57, 6693; R. Blattner
and R. J. Ferrier, J. Chem. Soc., Chem. Commun., 1987, 1008.
7 W. B. Motherwell and D. Crich, Free Radical Chain Reactions in
Organic Synthesis, Academic Press, London, 1992; D. P. Curran,
Synthesis 1989, 417; D. P. Curran, Synthesis 1989, 489.
8 H. Redlich, W. Sudau, A. K. Szardenings and R. Vollerthun, Carbohyr.
Res., 1992, 226, 57.
carba-a- -gulopyranose.
L
In conclusion we have disclosed a novel entry into function-
alized cyclohexane derivatives and carba-sugars from mono-
saccharides by 6-exo-dig cyclization of alk-6-ynyl radicals. Our
approach complements the one recently described by Maudru
et al.9 in the sense that it allows for functionalization at all
positions of the cyclohexane ring. The application of this
synthetic scheme to other pyranose derived diacetonides is
currently under study.
9 E. Maudru, G. Singh and R. H. Wightman, Chem. Commun., 1998,
1505.
10 R. J. Ferrier and S. Middleton, Chem. Rev., 1993, 93, 2779; B. Fraser-
Reid and R Tsang, Strategies and Tactics in Organic Synthesis,
Academic Press, New York, 1989, vol. 2, p. 123.
11 A. M. Gómez, S. Mantecón, S. Valverde and J. C. López, J. Org. Chem.,
1997, 62, 6612; J. C. López, A. M. Gómez and S. Valverde, J. Chem.
Soc., Chem. Commun., 1992, 613.
This research was supported with funds from the Dirección
General de Enseñanza Superior (grants: PB96-0822 and PB97-
1244). A. M. G. thanks the Consejo Superior de Investigaciones
Científicas for financial support. G. O. D. thanks the Agencía
Española de Cooperacion Internacional for a MUTIS scholar-
ship.
12 J. Gelas and D. Horton, Carbohydr. Res., 1978, 67, 371.
13 J. J. Gaudino and C. S. Wilcox, J. Am. Chem. Soc., 1990, 112, 4374.
14 M. J. Robins, J. S. Wilson and F. Hansske, J. Am. Chem. Soc., 1983, 105,
4059.
15 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1,
1975, 1574.
16 (a) L. Pingli and M. Vandewalle, Tetrahedron, 1994, 50, 7061; (b) T.
Takahashi, H. Kotsubo, T. Namiki and T. Koizumi, J. Chem. Soc.,
Perkin Trans. 1, 1990, 3065; (c) H. Paulsen, W. von Deyn and W.
Röben, Liebigs Ann. Chem., 1984, 433.
17 D. L. J. Clive, P. L. Beaulieu and L. Set, J. Org. Chem., 1984, 49,
1314.
Notes and references
† Compound 5 was the major isomer observed in the crude reaction mixture
and could be easily separated by chromatography. The stereochemistry at C-
1 was probed at a later stage on the synthesis. The corresponding epimer at
C-1 was also observed ( > 4:1 ratio) together with some isomeric
2,3:5,6-diacetonides (13C NMR).
‡ Compounds resulting from the reaction of both hydroxy groups were
always present, in yields ranging from 10–15%, and could be easily
separated by chromatography.
§
Compounds 8a and 8b existed as two isomers (ca. 1:1 ratio),
corresponding to the orientation of the phenyl group in the exocyclic double
bond. Conversely, only one isomer at the phenyl group was observed for the
cis-fused products 9a and 9b.
¶ The spectral properties (1H NMR, C6D6, 400 MHz) were in accord with
those reported in the literature (ref. 16): [a]D +2.0 (c 0.6, CHCl3), lit.,16a
18 R. E. McDevitt and B. Fraser-Reid, J. Org. Chem., 1994, 59, 3250.
19 D. P. Curran, N. A. Porter and B. Giese, Stereochemistry of Radical
Reactions, VCH, Weinheim, 1996, p. 53.
Communication 8/08848I
176
Chem. Commun., 1999, 175–176