O
OH
Notes and references
O
1 A. Saeed and D. W. Young, Tetrahedron, 1992, 48, 2507 and references
cited therein; R. B. Herbert, B. Wilkinson, G. J. Ellames and K. E.
Kunec, J. Chem. Soc., Chem. Commun., 1993, 205.
2 H. Maehr, C. M. Liu, N. J. Pelleroni, J. Smallheer, L. Todaro, T. H.
Williams and J. F. Blount, J. Antibiot., 1986, 39, 17.
HO
i
N
NH
Ph
4a, 5b
+
90%
HN
O
9
R1
R2HN
ii
3 M. Nakagawa, Y. Hayakawa, K. Furihata and H. Seto, J. Antibiot.,
1990, 43, 477.
O
OH
>95%
4 J. O’Sullivan, J. E. McCullough, A. A. Tymiak, D. R. Kirsch, W. H.
Trejo and P. A. Principe, J. Antibiot., 1988, 41, 1740; T. Kato, H. Hinoo,
Y. Tervi, J. Kikuchi and J. Shoji, J. Antibiot., 1988, 41, 719.
5 H. Shao and M. Goodman, J. Org. Chem., 1996, 61, 2582; Williams, Z.
Zhang, F. Shao, P. J. Carroll and M. Joulliè, Tetrahedron, 1996, 52,
11673 and references cited therein; K. J. Hale, S. Manaviazar and V. M.
Delisser, Tetrahedron, 1994, 50, 9181; S. Kanemasa, T. Mori and A.
Tatsukawa, Tetrahedron Lett., 1993, 34, 8293; T. Sanuzaka, T.
Nagamitsu, H. Tanaka, S. Omura, P. A. Sprengler and A. B. Smith,
Tetrahedron Lett., 1993, 34, 4447; E. J. Corey, D.-H. Lee and S. Choi,
Tetrahedron Lett., 1992, 33, 6735.
MeO
9a [α]D –17.9 (c 0.7, CHCl3)
9b [α]D –11.4 (c 4, CHCl3)
10b [α]D –7.7 (c 5, CHCl3)
HN
R2HN
O
R1
10
a R1 = Pri, R2 = Ac
b R1 = Ph, R2 = Boc
Scheme 3 Reagents and conditions: i, LiOH (3 equiv.), H2O2 (4 equiv.),
THF–H2O, 2 h, 0 °C; ii, CH2N2.
6 I. Ojima, C. M. Sun and Y. H. Park, J. Org. Chem., 1994, 59, 1249; I.
Ojima, H. Wang, T. Wang and E. W. Ng, Tetrahedron Lett., 1998, 39,
923.
7 C. Palomo, J. M. Aizpurua, I. Gamboa, B. Odriozola, E. Maneiro, J. I.
Miranda and R. Urchegui, Chem. Commun., 1996, 161; C. Palomo, I.
Gamboa, B. Odriozola and A. K. Linden, Tetrahedron Lett., 1997, 38,
3093.
8 I. J. Burnstein, P. E. Fanta and B. S. Green, J. Org. Chem. 1970, 35,
4084; T. A. Foglia, L. M. Gregory and G. Maerkel, J. Org. Chem., 1970,
35, 3779; C. U. Pittman and S. P. McManus J. Org. Chem., 1970, 35,
1187; D. Haidukewych and A. I. Meyers, Tetrahedron Lett., 1972, 30,
3031; S. G. Bates and M. A. Varelas, Can. J. Chem., 1980, 58, 2562; J.
Legters, L. Thijs and B. Zwanenburg, Recl. Trav. Chim. Pays-Bas,
1992, 111, 16.
9 K. Hory, T. Nishiguchi and A. Nabeja, J. Org. Chem., 1997, 62, 3081;
G. Cardillo, L. Gentilucci, A. Tolomelli and C. Tomasini, Tetrahedron
Lett., 1997, 38, 6953.
Finally, to obtain the free dipeptide, 4a was submitted to non-
destructive removal of the chiral auxiliary under Evans’
conditions,13 by means of LiOOH in THF–H2O (Scheme 3).
After 2 h the N-acetyl-(S)-Leu-(2R, 3S)-Thr dipeptide 9a was
recovered in good yield. Longer reaction times should be
avoided; indeed, after 6 h the reaction mixture contained 10% of
epimerized product.
On the basis of these results, 5b was hydrolysed over 2 h
giving without any epimerization the N-Boc-(S)-Phe-(2R, 3S)-
Thr dipeptide 9b,14 which was essentially pure after work-up
according to analysis of the crude reaction mixture. Compound
9b was converted by means of CH2N2 into the corresponding
methyl ester 10b.15
In order to confirm the stereochemistry of the aziridine ring
expansion via an SNi mechanism for 2 and 7, an authentic
sample of dipeptide 8b was prepared from commercially
available (2R, 3S)-threonine and (S)-phenylalanine (Scheme 4).
10 G. Cardillo, S. Casolari, L. Gentilucci and C. Tomasini, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 1848; A. Bongini, G. Cardillo, L Gentilucci and
C. Tomasini, J. Org. Chem., 1997, 62, 9148.
11 S. H. Pines, M. A. Kozlowski and S. Karady, J. Org. Chem., 1969, 34,
1621; D.-M. Gou, Y.-C. Liu and C.-S. Chen, J. Org. Chem., 1993, 58,
1287.
O
OH
O
12 Selected data for 5: dH(CDCl3) 0.80 (d, J 6.7, 3H, CH3CHCHPh), 1.20
(d, J 6.5, 3H, CH3CHOAc), 1.32 (s, 9H, But), 1.95 (s, 3H, COCH3), 2.88
(s, 3H, NCH3), 2.95–3.18 (m, 2H, CH2Ph), 4.00 (dq, J 6.7, 8.4, 1H,
CH3CHCHPh), 4.34–4.50 (m, 1H, CHCH2Ph), 4.88 (d, J 6.0, 1H,
HNBoc), 5.05 (d, J 8.4, 1H, CH3CHCHPh), 5.50 (dq, J 1.3, 6.5,
CHOAc), 6.08 (dd, J 1.3, 9.5, 1H, CHCHOAc), 6.65 (d, J 9.5, 1H,
HNCHCH), 7.02–7.46 (m, 10H, ArH); dC(CDCl3) 14.7, 20.8, 24.9,
25.6, 28.2, 33.9, 49.1, 54.3, 55.5, 59.9, 70.4, 77.8, 126.9, 128.2, 128.6,
129.2, 136.2, 136.3, 155.0, 155.4, 168.5, 170.5, 171.2.
13 J. R. Gage and D. A. Evans, Org. Synth., 1989, 68, 83.
14 Selected data for 9b: nmax/cm21 3300 br, 3050, 1720, 1700, 1660;
dH(CDCl3) 0.93 (d, J 6.0, CH3), 1.35 (s, 9H, But), 2.85–3.20 (m, 2H,
CH2Ph), 4.20–4.40 (m, 1H, CHOH), 4.40–4.67 (m, 2H, CHCHOH +
CHCH2Ph), 5.40 (d, J 6.0, 1H, HNBoc), 6.00–6.40 (m, 3H, OH +
HNCHCH + CO2H), 7.10–7.40 (m, 5H, ArH); dC(CDCl3) 19.3, 28.2,
38.9, 55.7, 57.4, 67.6, 80.1, 127.0, 128.6, 129.3, 136.4, 156.3, 172.2,
173.4; [a]D 211.4 (c 4, CHCl3).
i
ii
HO
Ph
NHBoc
MeO
+
10b
9b
60%
95%
NH2
Scheme 4 Reagents and conditions: i, DCC (1.1 equiv.), CH2Cl2–MeCN,
12 h, room temp.; ii, LiOH (2 equiv.), H2O2 (3 equiv.), THF–H2O, 1 h,
0 °C.
The (2R, 3S)-threonine methyl ester and N-Boc-(S)-phenyl-
alanine were coupled with DCC in CH2Cl2–MeCN and the
desired dipeptide derivative was obtained in satisfactory yield.
This compound was treated with LiOOH in THF–H2O13 and
afforded the corresponding carboxylic acid. Both 9b and 10b
showed H NMR and 13C NMR spectra which were identical,
1
and optical rotation values which were comparable, with the
authentic samples.
15 Selected data for 10b: nmax/cm21 3350, 3050, 1750, 1694, 1659, 1525;
dH(CDCl3) 1.00 (d, J 6.1, 3H, CH3), 1.32 (s, 9H, But), 2.95 (dd, J 6.7,
13.9, 1H, CH2Ph), 3.11 (dd, J 6.2, 13.9, 1H, CH2Ph), 3.67 (s, 3H,
CO2CH3), 4.20–4.32 (m, 1H, CHOH), 4.40–4.60 (m, 2H, CHCHOH +
CHCH2Ph), 5.40–5.58 (br s, 1H, HNBoc), 7.10–7.33 (m, 6H, ArH +
HNCHCH); dC(CDCl3) 19.5, 28.0, 33.6, 38.3, 52.2, 57.5, 67.2, 79.8,
126.5, 128.2, 129.1, 136.5 155.2, 171.2, 172.2; [a]D 27.7 (c 5,
CHCl3).
In conclusion, we have reported a new method that permits
the synthesis of b-hydroxy a-amino acids coupled with other a-
amino acids, starting from aziridine derivatives. Furthermore,
due to the observed retention of configuration in the ring
expansion of the starting aziridine, the stereochemistry of the
final dipeptide can be fixed by using the appropriate starting
material.
We thank the University of Bologna for funds for selected
research topics.
Communication 8/07063F
168
Chem. Commun., 1999, 167–168