Helvetica Chimica Acta ± Vol. 82 (1999)
189
from the mixture): 20.1 (q); 21.0 (q); 26.6 (t); 33.0 (t); 38.8 (t); 45.5 (d); 45.9 (t); 46.9 (d); 47.9 (s); 48.0 (d); 48.5
(s); 49.1 (d); 49.8 (d); 51.9 (q); 53.2 (t); 65.5 (d); 135.9 (d); 137.7 (d); 172.6 (s); 173.6 (s).
1
Cycloadduct exo-(2S,3S)-2b. H-NMR (deduced from the mixture): 0.97 (s, 3 H); 1.17 (s, 3 H); 1.20 ± 1.50
(m, 4 H); 1.70 (m, 1 H); 1.8 ± 2.0 (m, 2 H); 2.0 ± 2.2 (m, 2 H); 3.10 (dd, J 1.4, 5.0, 1 H); 3.15 ± 3.25 (m, 2 H);
3.605 (s, 3 H); 6.17 (dd, J 1.9, 5.6, 1 H); 6.31 (dd, J 2, 5.6, 1 H). 13C-NMR (deduced from the mixture): 20.1
(q); 20.9 (q); 26.6 (t); 33.1 (t); 38.8 (t); 44.9 (d); 46.1 (t); 47.2 (d); 48.1 (s); 48.4 (d); 48.5 (s); 48.6 (d); 50.0 (d);
51.9 (q); 53.3 (t); 65.7 (d); 136.1 (d); 138.1 (d); 172.7 (s); 173.7 (s).
Cycloadduct endo-(2S,3S)-2b. 1H-NMR (deduced from the mixture): 0.96 (s, 3 H); 1.15 (s, 3 H); 1.2 ± 1.5
(m, 4 H); 1.7 (m, 1 H); 1.8 ± 2.0 (m, 2 H); 2.0 ± 2.2 (m, 2 H); 2.60 (dd, J 2, 5.3, 1 H); 3.15 ± 3.25 (m, 2 H); 3.675
(s, 3 H); 6.06 (dd, J 3, 5.5, 1 H); 6.31 (dd, J 3, 5.5, 1 H). 13C-NMR (deduced from the mixture): 20.1 (q); 20.8
(q); 26.6 (t); 32.9 (t); 38.6 (t); 44.7 (d); 45.1 (t); 47.1 (d); 48.0 (s); 48.5 (d); 48.6 (s); 48.8 (d); 50.3 (d); 52.1 (q);
53.2 (t); 65.6 (d); 134.6 (d); 137.0 (d); 172.7 (s); 173.6 (s).
(2R,3R)-3-{[(3aS,6R,7aR)-1,4,5,6,7,7a-hexahydro-8,8-dimethyl-2,2-dioxido-3H-3a,6-methano[2.1]benziso-
thiazol-1-yl]carbonyl}bicyclo[2.2.1]heptane-2-carboxylic Acid ((2R,3R)-4).
A soln. of endo-(2R,3R)-2d
(470 mg, 1.0 mmol) in EtOH (10 ml) was hydrogenated in the presence of 10% Pd/C (47 mg). After 4 h, the
soln. was filtered and evaporated under medium and then high vacuum to give quantitatively (2R,3R)-4. White
solid. M.p. 250 ± 2518 (98% EtOH). [a]D20
138.2 (c 1.3, CHCl3). IR: 3150, 2954, 1697, 1680, 1458, 1407,
1388, 1296, 1265, 1181, 1040, 930, 848. 1H-NMR: 0.98 (s, 3 H); 1.14 (s, 3 H); 0.8 ± 1.45 (m, 7 H); 1.55 (m, 1 H);
1.68 (br. d, J 16, 1 H); 1.88 (m, 2 H); 2.05 (m, 2 H); 2.64 (br. d, J 5, 1 H); 2.88 (br. t, J 3, 1 H); 3.04
(br. d, J 5, 1 H); 3.48 (AB, J 14, 2 H); 3.75 (m, 1 H); 3.92 (dd, J 6, 11, 1 H); 8.6 (br. s, 1 H). 13C-NMR:
19.9 (q); 20.8 (q); 23.6 (t); 26.5 (t); 28.6 (t); 32.7 (t); 38.8 (t); 39.0 (t); 41.5 (d); 41.6 (d); 44.7 (d); 47.7 (d); 48.3
.
(2 s); 50.7 (d); 53.0 (t); 65.3 (d); 172.0 (s); 179.4 (s). EI-MS: 381 (1.5, M ), 315(74), 297(20), 216(100),
167(71), 139(41), 121(13), 93(21), 67(40).
REFERENCES
[1] C. Chapuis, P. Rzepecki, T. Bauer, J. Jurczak, Helv. Chim. Acta 1995, 78, 145.
[2] T. Bauer, C. Chapuis, A. Kucharska, P. Rzepecki, J. Jurczak, Helv. Chim. Acta 1998, 81, 324.
[3] E. J. Corey, W. G. Su, Tetrahedron Lett. 1988, 29, 3423; G. Helmchen, A. F. Abdel Hady, H. Hartmann,
R. Karge, A. Krotz, K. Sartor, M. Urmann, Pure Appl. Chem. 1989, 61, 409; G. Helmchen, A. Goebe,
G. Laner, M. Urmann, J. Fries, Angew. Chem. 1990, 102, 1079; ibid., Int. Ed. Engl. 1990, 29, 1024;
Â
Â
J. L. Charlton, K. Koh, J. Org. Chem. 1992, 57, 1514; G. Solladie, O. Lohse, ibid. 1993, 58, 4555; J. Aube,
S. Ghosh, M. Tanol, J. Am. Chem. Soc. 1994, 116, 9009.
[4] J. L. Charlton, G. Plourde, K. Koh, A. S. Secco, Can. J. Chem. 1990, 68, 2022; A. P. Kozikowski,
V. I. Ognyanov, C. Chen, P. Kurian, F. T. Crews, Tetrahedron Lett. 1993, 34, 219.
[5] J. Sauer, J. Kredel, Angew. Chem. 1965, 77, 1037; ibid., Int. Ed. Engl. 1965, 4, 589; N. Hamanaka, T. Seko,
T. Miyazaki, M. Naka, K. Furuta, H. Yamamoto, Tetrahedron Lett. 1989, 30, 2399; A. Yamazaki, T. Morito,
K. Achiwa, Tetrahedron: Asymmetry 1993, 4, 2287.
[6] J. M. Takacs, D. A. Quincy, W. Shay, B. E. Jones, C. R. Ross, Tetrahedron: Asymmetry 1997, 8, 3079;
M. C. Aversa, A. Barattucci, P. Bonaccorsi, P. Giannetto, M. Panzalorto, S. Rizzo, ibid. 1998, 9, 1577;
R. Lenz, S. V. Ley, D. R. Owen, S. L. Warriner, ibid. 1998, 9, 2471.
[7] J. M. Hawkins, S. Loren, J. Am. Chem. Soc. 1991, 113, 7794; P. N. Devine, T. Oh, Tetrahedron Lett. 1991, 32,
883; J. Org. Chem. 1992, 57, 396; C. Chapuis, J. Jurczak, Pol. J. Chem. 1994, 68, 99.
[8] J. Jurczak, T. Bauer, C. Chapuis, ꢀ Houben-Weyl, Stereoselective Synthesisꢁ, Eds. G. Helmchen,
R. W. Hoffmann, J. Mulzer, E. Schaumann, Thieme Verlag, Stuttgart 1995, Vol. E21c, p. 2735, p. 2905.
[9] a) G. Helmchen, R. Schmierer, Angew. Chem. 1981, 93, 208; ibid., Int. Ed. Engl. 1981, 20, 205; b) K. Furuta,
S. Hayashi, Y. Miwa, H. Yamamoto, Tetrahedron Lett. 1987, 28, 5841; c) K. Tomioka, N. Hamada,
T. Suenaga, K. Koga, J. Chem. Soc., Perkin Trans. 1 1990, 426; d) K. Muruoka, S. Saito, H. Yamamoto, J.
Am. Chem. Soc. 1992, 114, 1089; e) S. Hiraoka, T. Yoshida, K. Kansui, T. Kunieda, Tetrahedron Lett. 1992,
33, 4341, f) S. Bain, R. M. Pagni, G. W. Kabalka, C. Pala, Tetrahedron: Asymmetry 1994, 5, 821;
g) H. Kansui, S. Hiraoka, T. Kunieda, J. Am. Chem. Soc. 1996, 118, 5346; K. Tanaka, N. Asakawa,
M. Nuruzzaman, K. Fuji, ibid. 1997, 8, 3637.
[10] K. Narasaka, M. Inoue, T. Yamada, J. Sugimori, N. Iwasawa, Chem. Lett. 1987, 2409; K. Narasaka,
N. Iwasawa, M. Inoue, T. Yamada, M. Nakashima, J. Sugimori, J. Am. Chem. Soc. 1989, 111, 5340;
E. J. Corey, Y. Matsumura, Tetrahedron Lett. 1991, 32, 6289; D. A. Evans, T. Lectka, S. J. Miller, ibid. 1993,