M. El Sous, M. A. Rizzacasa / Tetrahedron Letters 46 (2005) 293–295
295
Table 1. Comparisons of 1H NMR (400MHz, CDCl3) and 13C NMR (100MHz, CDCl3) data for model dioxanes 18 and 20 with dioxanyloxy
fragment signals for natural products 2 and 1
Proton
Diol (18)
Episilvestrol (2)
1H d, mult, J (Hz)
Diol (20)
Silvestrol (1)
1H d, mult, J (Hz)
13C d
13C d
1H d, mult, J (Hz)
13C d
1H d, mult, J (Hz)
13C d
1000
5.27, s
4.60, s
3.47, s
93.5
95.4
55.0
59.7
5.26, s
4.60, s
3.5, s
93.4
95.2
55.0
59.6
5.34, s
4.62, s
93.5
95.3
55.0
59.0
5.28, s
4.59, s
3.49, s
94.0
95.2
55.1
59.0
2000
OCH3
3000Hax
3000Heq
4000
5000
6000Ha
6000Hb
3.49, s
4.13, t, 11.1
3.56, m
3.97, t, 11.1
3.75, dd, 11.1, 2.7
4.11, m
4.02, t, 11.2
3.78, dd, 11.7, 2.4
4.12, ddd, 11, 7, 2.8
3.61, dd, 10.4, 4.4
3.66–3.72, m
3.66–3.72, m
4.13, t, 11.2
3.56, dd, 11.7, 2
4.23, br t, 11.3
3.61, m
67.4
71.6
62.8
67.6
71.4
62.5
4.24, dt, 10.8, 2.7
3.55, m
68.4
70.5
63.5
68.3
70.6
63.3
3.56, m
3.59, br s
3.59, br s
3.56, br s
3.56, br s
3.61, br s
3.61, br s
Liou, M.-J.; Kuoh, C.-S.; Teng, C.-M.; Nagao, T.; Lee,
K.-H. J. Nat. Prod. 1997, 60, 606.
3. Ishibashi, F.; Satasook, C.; Isman, M. B. Phytochemistry
1993, 32, 307.
compared very well with the same signals due to the
dioxanyloxy fragment in the natural product 2 (Table 1).
The synthesis of the silvestrol dioxanyloxy fragment
from D-galactose would require an alternative protect-
ing group strategy so we investigated a route from the
common intermediate 17 as shown in Scheme 2.
Hydrogenolysis of the benzyl group afforded the alcohol
19, which was subjected to a modified Mitsunobu inver-
sion.15 Methanolysis of the resultant p-nitrobenzoate
and TBS group removal gave the model silvestrol diox-
ane 20. Again, the data for compound 20 compared well
to the natural product signals for 1 (Table 1).
4. King, M. L.; Chiang, C. C.; Ling, H. C.; Fugita, E.;
Ochiai, M.; McPhail, A. T. J. Chem. Soc., Chem.
Commun. 1982, 1150.
5. Proksch, P.; Edrada, R.; Ebel, R.; Bohnenstengel, F. I.;
Nugroho, B. W. Curr. Org. Chem. 2001, 5, 923.
6. Meurer-Grimes, B. M.; Yu, J.; Vario, G. L. U.S. Patent
US6710075 B2, 2004, 28pp.
7. Hwang, B. Y.; Su, B.-N.; Chai, H.; Mi, Q.; Kardono, L. B.
S.; Afriastini, J. J.; Riswan, S.; Santarsiero, B. D.;
Mesecar, A. D.; Wild, R.; Fairchild, C. R.; Vite, G. D.;
Rose, W. C.; Farnsworth, N. R.; Cordell, G. A.;
Pezzuto, J. M.; Swanson, S. M.; Kinghorn, A. D. J.
Org. Chem. 2004, 69, 3350. Correction: J. Org. Chem.
2004, 69, 6156.
8. (a) Kraus, G. A.; Sy, J. O. J. Org. Chem. 1989, 54, 77;
(b) Trost, B. M.; Greenspan, P. D.; Yang, B. V.; Saulnier,
M. G. J. Am. Chem. Soc. 1990, 112, 9022; (c) Davey, A.
E.; Schaeffer, M. J.; Taylor, R. J. K. J. Chem. Soc., Perkin
Trans. 1 1992, 2657.
In conclusion, we have developed an enantiospecific
route to the 1,4-dioxanyloxy fragments of silvestrol (1)
and episilvestrol (2) from D-glucose based on a proposed
biosynthetic pathway. The total synthesis of 1 and 2 is
currently under investigation.
9. Gerard, B.; Jones, G., II; Porco, J. A., Jr. J. Am. Chem.
Soc. 2004, 126, 13620.
Acknowledgements
10. Heidleberg, T.; Thiem, J. J. Prakt. Chem./Chem. Ztg.
1998, 340, 223.
11. Jiang, L.; Chan, T.-H. Tetrahedron Lett. 1998, 39,
355.
We are indebted to Cerylid Pty Ltd (Melbourne, Austra-
lia) for generous funding for this project as well as
authentic samples of 1 and 2.
12. All new compounds provided data in accord with their
assigned structures.
References and notes
13. Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503.
14. Schmidt, R. R.; Reichrath, M.; Moering, U. Tetrahedron
Lett. 1980, 21, 3561; Schmidt, R. R.; Reichrath, M.;
Moering, U. J. Carbohydr. Chem. 1984, 3, 67.
15. Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32,
3017.
1. Meurer-Grimes, B. M.; Yu, J.; Vario, G. L. PTC Int.
Appl. WO 2002002566, A1 20020110, 2002, 60pp.
2. (a) Ko, F. N.; Wu, T. S.; Liou, M. J.; Huang, T. F.; Teng,
C. M. Eur. J. Pharmcol. 1992, 218, 129; (b) Wu, T.-S.;