412 J ournal of Natural Products, 1999, Vol. 62, No. 3
Pettit et al.
necessary). The solution was cooled (-10 °C) and stirred, and
DEPC (calculated volume of 93% pure DEPC was added to
give 1.1 equiv) was added via syringe. After being stirred for
15 min, a solution of the amino acid tert-butyl ester in
dichloromethane was added. DIEA (1.1 equiv) was added via
syringe and the solution allowed to warm to rt over the course
of 2 h. The reaction mixture was stirred at rt for 6 h,
whereupon TLC monitoring indicated the desired N-Fmoc-
peptide-OBut and a minor amount of dibenzofulvene (DBF).
The reaction mixture was washed successively with 10%
aqueous citric acid, saturated aqueous NaHCO3, water, and
brine. Drying, filtration, and solvent removal gave the crude
product.
N-F m oc-4Tyr (OBu t)-3P r o-2P h e-1P r o-OBu t (12). N-Fmoc-
Pro-Phe-Pro-OBut (11, 5.1 g, 8 mmol) was N-deprotected and
coupled (cf. the general methods) with N-Fmoc-OBut-Tyr. The
oily product was subjected to chromatographic separation
using 3:1 EtOAc-hexane to provide the tetrapeptide as a
colorless foam that precipitated from ether-hexane (5.14 g,
75%) to give a colorless solid: mp 90-92 °C; Rf 0.45 (3:1
EtOAc-hexane); [R]24 -47° (c 0.32, CHCl3); λmax (CHCl3/nm
D
(log ꢀ) 228 (4.1), 267 (4.3), 289 (3.8), 300 (3.8); IR νmax (Nujol)/
cm-1 3408, 3292, 3057, 2978, 2879, 1722, 1641, 1506, 1477,
1367, 1255, 1161, 1037, 898, 738; 1H NMR δ 1.26 (d, J ) 10.8
Hz, 2H, Pro γ-CH2), 1.27 (s, 9H, Pro C(CH3)3), 1.33 (dd, J )
10.8, 1.2 Hz, 2H, Pro γ-CH2), 1.37 (d, J ) 2.1 Hz, 1H, Pro
γ-CH2), 1.47 (s, 9H, Tyr C(CH3)3), 1.65 (m, 1H, Pro CH2), 1.80
(m, 1H, Pro CH2), 1.95 (m, 2H, Pro â-CH2), 2.14 (m, 2H, Pro
â-CH2), 2.86 (d, J ) 6.6 Hz, 2H, Tyr â-CH2), 2.97 (dd, J ) 15,
6.6 Hz, 2H, Phe â-CH2), 3.10 (m, 2H), 3.20 (dd, Pro δ-CH2),
3.31 (dd, Pro δ-CH2), 3.37 (m, 1H, Pro δ-CH2), 3.65 (m, 1H,
Pro δ-CH2), 4.11 (dd, Fmoc â-CH2), 4.25 (m, 2H, Fmoc â-CH2),
4.38 (m, 1H, Fmoc R-CH), 4.43 (m, 1H, Pro R-CH), 4.49 (m,
1H, Pro R-CH), 4.63 (m, 1H, Phe R-CH), 4.91 (dd, J ) 13.5,
6.6 Hz, 1H, Tyr R-CH), 5.69 (d, J ) 9 Hz, 1H, Phe NH), 5.75
(d, J ) 8.7 Hz, 1H, Tyr NH), 6.88 (d, J ) 8.1 Hz), 7.06 (d, J )
8.7 Hz), 7.18 (t, J ) 8.7 Hz), 7.30 (t, J ) 7.2 Hz), 7.39 (t, J )
7.2 Hz), 7.57 (d, J ) 7.2 Hz, 2H, Fmoc Ar-CH), 7.75 (d, J )
7.2 Hz, 2H, Fmoc Ar-CH); 13C NMR (75 MHz) δ 21.85 (3Pro
γ-CH2), 24.56 (1Pro γ-CH2), 27.53 (3Pro â-CH2), 27.75 (Tyr
C(CH3)3), 28.52 (Pro C(CH3)3), 28.74 (1Pro â-CH2), 38.04 (Phe
â-CH2), 38.44 (Tyr â-CH2), 46.65 (1Pro δ-CH2), 46.86 (3Pro
δ-CH2), 52.04 (Tyr R-CH), 53.81 (Phe R-CH), 59.54 (1Pro R-CH),
59.77 (3Pro-R-CH), 65.33 (Fmoc R-CH), 66.80 (Fmoc â-CH2),
77.99 (Tyr C(CH3)3), 80.96 (Pro C(CH3)3), 119.73 (Fmoc Ar-
CH), 123.95 (Tyr Ar-CH), 125.03 (Fmoc Ar-CH), 126.54 (Tyr
Ar-CH), 126.87 (Phe Ar-CH), 127.48 (Fmoc Ar-CH), 128.12
(Phe Ar-CH), 129.74 (Fmoc Ar-CH), 129.86 (Phe Ar-pCH),
131.11 (Tyr γ-Cq), 136.25 (Phe γ-Cq), 141.06 (Fmoc Ar-Cq),
143.72 (Fmoc Ar-Cq), 154.02 (Tyr Ar-Cq-OBut), 155.64 (ure-
thane CO), 169.60 (Phe CO), 170.42 (Tyr CO), 171.01 (3Pr CO),
171.13 (1Pro CO); anal. C 70.67%, H 7.28%, N 6.36%, calcd
for C51H60N4O8‚1/2H2O, C 70.73%, H 6.93%, N 6.47%.
N-F m oc-Ile-P r o-OBu t (8). Using the above general pro-
cedures, N-Fmoc-Pro-OBut (7, 10.0 g; 25.4 mmol) was N-
deprotected and coupled with N-Fmoc-Ile. The resulting crude
product was purified chromatographically (3:1 hexane-EtOAc
as eluent) to give 9.3 g (72%) of a foamy solid that crystallized
slowly from dichloromethane: mp 47-49 °C; Rf 0.24 (3:1
hexanes-EtOAc); [R]24 -37° (c 0.31, CHCl3); EIMS m/z 506
D
(15), 433 (12), 394 (5), 336 (7), 308 (35), 284 (75), 264 (13), 211
(100), 178 (100); anal. C 70.82%, H 7.42%, N 5.81%, calcd for
C
30H38N2O5, C 71.12%, H 7.56%, N 5.53%.
N-F m oc-3Ile-2Ile-1P r o-OBu t (9). As summarized above,
N-Fmoc-Ile-Pro-OBut (8, 8.00 g; 15.8 mmol) was N-deprotected
and condensed with N-Fmoc-Ile. The clear oily product was
chromatographed (2:1 hexanes-EtOAc) to give 8.65 g (88.3%)
of a colorless foam: mp 96-98 °C; Rf 0.23 (2:1 hexane-EtOAc);
[R]24 -58° (c 0.20, CHCl3); λmax (CHCl3)/nm (log ꢀ) 267 (4.35),
D
289 (3.87), 301 (3.91); IR νmax (Nujol)/cm-1 3290, 3067, 2966,
2877, 1724, 1641, 1537, 1448, 1367, 1242, 1155, 1035, 910, 758;
EIMS m/z 619 (10), 546 (5), 449 (10), 367 (2), 311 (4), 255 (14),
225 (12), 178 (100); 1H NMR δ 0.86 (t, J ) 7.5 Hz, 3H, 2Ile
3
γ-CH3), 0.90 (t, J ) 7.5 Hz, 3H, Ile γ-CH3), 1.01 (d, J ) 7.0
Hz, 6H, 2,3Ile δ-CH3), 1.12 (m, 4H, 2,3Ile γ-CH2), 1.45 (s, 9H,
C(CH3)3), 1.57-1.85 (m, 2H, 2,3Ile â-CH), 1.94 (m, 2H, Pro
γ-CH2), 2.04 (t, J ) 8.5 Hz, 1H, Pro â-CH2), 2.17 (m, 1H, Pro
â-CH2), 3.65 (dd, J ) 13, 7 Hz, 1H, Pro δ-CH2), 3.81 (dd, J )
13, 7 Hz, 1H, Pro δ-CH2), 4.06 (t, J ) 7 Hz, 1H, 2Ile R-CH),
4.22 (t, J ) 7 Hz, 1H, 3Ile R-CH), 4.38 (m, 3H, Pro R-CH, Fmoc
â-CH2), 4.63 (t, J ) 8 Hz, 1H, Ile R-CH), 5.38 (d, J ) 8.5 Hz,
1H, 2Ile-NH), 6.50 (d, J ) 9.0 Hz, 1H, 3Ile-NH), 7.31 (t, J )
7.5 Hz, 2H, Fmoc Ar-H), 7.40 (t, J ) 7.5 Hz, 2H, Fmoc Ar-H),
7.59 (t, J ) 7.5 Hz, 2H, Fmoc Ar-H), 7.76 (t, J ) 7.5 Hz, 2H,
Fmoc Ar-H); 13C NMR (100 MHz) δ 10.82 (2Ile δ-CH3), 11.18
(3Ile δ-CH3), 15.05 (2Ile γ-CH3), 15.33 (3Ile γ-CH3), 24.28 (Pro
γ-CH2), 24.60 (2Ile γ-CH2), 24.65 (3Ile γ-CH2), 27.74 (Pro
C(CH3)3), 28.96 (Pro â-CH2), 37.19 (2Ile â-CH), 37.65 (3Ile
â-CH), 46.97 (Fmoc R-CH), 47.25 (Pro δ-CH2), 54.74 (2Ile
R-CH), 59.38 (3Ile R-CH), 59.54 (Pro R-CH), 66.80 (Fmoc
-CH2), 81.00 (Pro C(CH3)3), 119.68, 124.93, 124.99, 126.83,
127.40 (Fmoc Ar-CH), 141.02 (Fmoc Ar-Cq), 143.67 (Fmoc Ar-
Cq), 156.02 (urethane CO), 170.23 (2Ile CO), 170.88 (3Ile CO),
171.33 (Pro CO); anal. C 69.78%, H 8.16%, N 6.72%, calcd for
N -F m o c -7I le -6I le -5P r o -4T y r (O B u t )-3P r o -2P h e -1P r o -
OBu t (13). N-Fmoc-Tyr(OBut)-Pro-Phe-Pro-OBut (12, 2.50 g,
2.92 mmol) was N-deprotected (see above). Simultaneously,
N-Fmoc-Ile-Ile-Pro-OBut (9, 1.81 g; 2.92 mmol) was treated
with TFA (10 mL) for 1 h, and the solvents were removed
(azeotropically) under vacuum. Peptide bond formation led to
a faint yellow oil that was purified by chromatography in
EtOAc to give the product as a foam that crystallized from
EtOAc-hexane (2.50 g, 71%) as a colorless powder: mp 123-
125 °C; Rf 0.24 (EtOAc); [R]24 -80.9° (c 0.22, CHCl3); λmax
D
(CHCl3)/nm (log ꢀ) 267 (4.29), 289 (3.66), 301 (3.62); IR νmax
(KBr)/cm-1 3414, 3306, 2972, 2933, 2877, 1728, 1631, 1508,
1448, 1365, 1236, 1159, 1033, 898, 742; 1H NMR δ 0.81 (t, J )
6
6
7.0 Hz, 3H, Ile δ-CH3), 0.85 (d, J ) 5.5 Hz, 3H, Ile γ-CH3),
7
C
36H49N3O6, C 69.76%, H 7.97%, N 6.78%.
0.85 (t, J ) 6.0 Hz, 3H, Ile δ-CH3), 0.95 (d, J ) 6.0 Hz, 3H,
N-F m oc-P h e-P r o-OBu t (10). For preparation of this dipep-
7Ile δ-CH3), 1.14-1.46 (2m, 4H, 7,6Ile γ-CH2), 1.25 (s, 9H, Tyr
C(CH3)3), 1.38 (s, 9H, Pro C(CH3)3), 1.59, 1.87 (2m, 2H, 7,6Ile
â-CH), 1.87-1.95 (m, 3H, 5,3,1Pro â-CH2), 1.93-2.17 (m, 6H,
5,3,1Pro γ-CH2), 2.06-2.17 (m, 3H, 5,3,1Pro â-CH2), 2.83 (dd, J
) 13.0, 6.0 Hz, 2H, Tyr â-CH2), 2.96 (dd, J ) 14.0, 6.6 Hz, 2H,
tide N-Fmoc-Pro-OBut (7, 12.0 g; 30.5 mmol) was N-depro-
tected and combined with N-Fmoc-Phe. The pale yellow oily
product was purified by chromatography in 5:2 hexane-EtOAc
to afford a solid that crystallized from EtOAc-hexane to give
colorless prisms (13.1 g; 80%): mp 145.1-145.4 °C; Rf 0.48
1
Phe â-CH2), 3.15 (d, J ) 6.0 Hz, 2H, Pro δ-CH2), 3.22 (d, J )
(2:1 hexanes-EtOAc); [R]25 -78° (c 0.54, CHCl3); EIMS m/z
6.0 Hz, 2H, Pro δ-CH2), 3.42-3.55 (m, 1H, Pro δ-CH2), 3.70,
3.90 (2m, 1H, 5Pro δ-CH2), 4.11 (t, J ) 7.0 Hz, 1H, 7,6Ile R-CH),
4.20 (m, 2H, Fmoc â-CH2), 4.26 (t, J ) 8.0 Hz, 1H, 6Ile R-CH),
3
5
D
540 (20), 467 (10), 393 (20), 342 (15), 227 (10), 178 (100); anal.
C 73.6%, H 6.89%, N 5.09%, calcd for C33H46N2O5, C 73.3%, H
6.71%, N 5.18%.
3
4.35 (m, 1H, Fmoc R-CH), 4.37 (m, 1H, Pro R-CH), 4.48 (bd,
N-F m oc-3P r o-2P h e-1P r o-OBu t (11). The preceding N-
Fmoc-Phe-Pro-OBut (10, 10.0 g; 18.5 mmol) was N-deprotected
and coupled with N-Fmoc-Pro. The resulting clear oil was
separated chromatographically employing 3:1 EtOAc-hexane
as eluent to give a solid that crystallized from ether-hexane
(9.44 g, 80%) as a colorless solid: mp 110-111 °C; Rf 0.27 (3:1
EtOAc-hexane); [R]25D -86° (c 1.0, CHCl3); EIMS m/z 637 (1),
564 (1), 467 (1), 415 (4), 346 (6), 303 (20), 247 (50), 178 (100);
anal. C 71.66%, H 7.02%, N 6.49%, calcd for C38H43N3O6, C
71.6%, H 6.8%, N 6.58%.
J ) 8.0 Hz, 2H, 5,1Pro R-CH), 4.76 (t, J ) 8.0 Hz, 1H, Phe
R-CH), 4.98 (dd, J ) 14.0, 6.0 Hz, 1H, Tyr R-CH), 5.53 (d, J )
9.0 Hz, 1H, Phe NH), 6.80 (d, J ) 8.0 Hz, 1H, Tyr NH), 6.85
(d, J ) 8.5, 1H, 7Ile NH), 7.07 (d, J ) 8.0 Hz, 1H, 6Ile NH),
7.17 (t, J ) 8.0 Hz, 2H, Fmoc Ar-H), 7.21-7.40 (m, 9H, Phe
Ar-H and Tyr Ar-H), 7.60 (t, J ) 6.0 Hz, 2H, Fmoc Ar-H), 7.72
(t, J ) 5.5 Hz, 2H, Fmoc Ar-H), 8.21 (bd, J ) 6.0 Hz, 2H, Fmoc
Ar-H); 13C NMR δ 10.92 (Ile δ-CH3), 11.36 (Ile δ-CH3), 15.07
(Ile γ-CH3), 15.91 (Ile γ-CH3), 24.50 (Pro δ-CH2), 24.53 (Pro
δ-CH2), 24.59 (Pro δ-CH2), 24.65 (Ile CH2), 24.77 (Ile CH2),