Organic Process Research & Development 2004, 8, 256−259
Dimethyltitanocene: From Millimole to Kilomole
Joseph F. Payack,*,† Mark A. Huffman,*,† Dongwei Cai,† David L. Hughes,† Paul C. Collins,‡ Brian K. Johnson,‡
Ian F. Cottrell,† and Linda D. Tuma‡
Departments of Process Research and Chemical Engineering, Merck & Co. Inc., P.O. Box 2000,
Rahway, New Jersey 07065-0900, U.S.A.
Scheme 1
Abstract:
The process development of a dimethyltitanocene-mediated
ester olefination is described. The synthetic challenges and
stability issues involving large-scale production of dimethylti-
tanocene are documented, and the optimization of the ester
olefination is detailed. The process described was used to make
hundreds of kilograms of an advanced intermediate for aprepi-
tant (Emend).
Aprepitant (Emend) is a substance P antagonist that was
recently approved in the United States as a therapy to prevent
chemotherapy-induced nausea and vomiting.1 While several
alternative syntheses have been described,2 drug supplies to
support the clinical program were produced via a route that
employed dimethyltitanocene to convert an ester into a vinyl
ether (Scheme 1).3 The large amounts of bulk drug needed
during development necessitated the production of hundreds
of kilograms of dimethyltitanocene (DMT). This contribution
details the efforts to make the preparation and use of this
reagent safe and reliable from benchtop to 100-kg scale.
Petasis4 developed dimethyltitanocene as a convenient
alternative to the Tebbe reagent5 and the Grubbs metalocy-
clobutane analogue,6 for the olefination of esters, ketones,
and amides. The advantages of DMT over the earlier reagents
were ease of preparation, absence of Lewis-acidic aluminum
byproducts, and importantly for the organic synthetic chem-
ist, air and water stability. DMT is very effective at small-
scale olefination transformations; indeed, the reaction de-
picted in Scheme 1 proceeded in near quantitative yield.
Scheme 2
* To whom correspondence should be addressed. E-mail: joseph_payack@
merck.com, mark_huffman@merck.com.
While the Petasis reagent is extremely effective at ester
† Department of Process Research.
‡ Department of Chemical Engineering Research and Development.
(1) Navari, R.; Reinhardt, R. R.; Gralla, R. J.; Kris, M. G.; Hesketh, P. J.;
Khojasteh, A.; Kindler, H.; Grote, T. H.; Pendergrass, K.; Grunberg, S.
M.; Carides, A. D.; Gertz, B. J. N. Engl. J. Med. 1999, 340, 190.
(2) Brands, K. M. J.; Payack, J. F.; Rosen, J. D.; Nelson, T. D.; Candelario,
A.; Huffman, M. A.; Zhao, M. M.; Li, J.; Craig, B.; Song, Z. J.; Tschaen,
D. M.; Hansen, K.; Devine, P. N.; Pye, P. J.; Rossen, K.; Dormer, P. G.;
Reamer, R. A.; Welch, C. J.; Mathre, D. J.; Tsou, N. N.; McNamara J. M.;
Reider, P. J. J. Am. Chem. Soc. 2002, 125, 2129. Zhao, M. M.; McNamara,
J. M.; Ho, G.-J.; Emerson, K. M.; Song, Z. J.; Tschaen, D. M.; Brands, K.
M. J.; Dolling, U.-H.; Grabowski, E. J. J.; Reider, P. J.; Cottrell, I. F.;
Ashwood, M. S.; Bishop, B. C. J. Org. Chem. 2002, 67, 6743. Pye, P. J.;
Rossen, K.; Weissman, S. A.; Maliakal, A.; Reamer, R. A.; Ball, R.; Tsou,
N. N.; Volante, R. P.; Reider, P. J. Chem. Eur. J. 2002, 8, 1372.
(3) Hale, J. J.; Mills, S. G.; MacCoss, M.; Finke, P. E.; Cascieri, M. A.;
Sadowski, S.; Ber, E.; Chicci, G. G.; Kurtz, M.; Metzger, J.; Eierman, G.;
Tsou, N. N.; Tattersall, F. D.; Rupniak, N. M. J.; Williams, A. R.; Rycroft,
W.; Hargreaves, R.; MacIntyre, D. E. J. Med. Chem. 1998, 41, 4607.
(4) Petasis N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392. Petasis N.
A.; Lu, S.-P. Tetrahedron Lett. 1995, 36, 2393.
olefinations, a series of drawbacks rapidly became apparent
as scale-up was contemplated. DMT is not stable in the solid
state,7 and a crystalline mass of the material would decom-
pose, releasing heat and gas. In addition, the molecule is
intrinsically unstable at synthetically relevant temperatures
and concentrations, raising considerable safety concerns.8
Since two moles of DMT are needed per mole of ester
(Scheme 2),9 not only are large amounts of the reagent
needed for pilot-scale production, but an efficient method
for removing the titanocene residues also had to be devel-
(6) Grubbs, R. H.; Tumas, W. Science 1989, 243, 907.
(7) Alt, H. G.; di Santo, F. P.; Rausch, M. D.; Uden, P. C. J. Organomet. Chem.
1976, 107, 257.
(8) Erskine, G. J.; Wilson, D. A.; McGowan, J. D. J. Organomet. Chem. 1976,
114, 119. Erskine, G. J.; Hartgerink, J.; Weinberg, E. L.; McCowan, J. D.
J. Organomet. Chem. 1979, 170, 51.
(5) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100,
3611. Pine, S. H.; Zahler, R.; Evans, D. A.; Grubbs, R. H. J. Am. Chem.
Soc. 1980, 102, 3270.
(9) Hughes, D. L.; Payack, J. F.; Cai, D.; Verhoeven, T. R.; Reider, P. J.
Organometallics 1996, 15, 663.
256
•
Vol. 8, No. 2, 2004 / Organic Process Research & Development
10.1021/op034180j CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/04/2004