In conclusion, this pyrrole synthesis is highly versatile and
permits access to 2,5-unsubstituted pyrroles, 3-hydroxypyrrole
derivatives, isoindoles and the novel oxacino[2,3-c]pyrroles.
We thank the EPSRC for the provision of a mass spectrome-
try service at the University of Wales, Swansea.
Notes and references
† All new compounds were fully characterised by 1H and 13C NMR, HRMS
and elemental analyses.
¯
‡ Crystal data for 8: C17H23NO4, M = 305.36, triclinic, space group P1, a
= 7.7540(11), b = 8.8328(12), c = 12.476(2) Å, a = 78.530(14), b =
89.250(12), g = 81.025(9)°, U = 827.0(2) Å3, Dc = 1.226 g cm23, Z = 2,
Cu-Ka radiation (l = 1.54184 Å), m = 0.71 mm21, T = 160 K, R1 =
0.0471 (F2 > 2s), wR2 = 0.1095 (all data) for 2778 unique data and 205
parameters. CCDC 182/1130. Crystallographic data is available in CIF
1999/289/
Fig. 1 X-Ray crystallographic structure of the oxacino[2,3-c]pyrrole 8.
consequence of the rigidity imparted to the ring by the enol
acetate function.
§ Selected data for 8: from 5d (49.5%) after elution from silica with 40%
Scheme 3 depicts a possible mechanism for the formation of
the isoindoles 6 and oxacinopyrrole 8. It is well established that
the acylation of N-substituted amino acids proceeds with the
formation of mesoionic 1,3-oxazolium-5-olates (munchnones)
and evidence has accrued that these are tautomeric with N-acyl
ketenes.11 The mesoionic heterocycle 10 may react by two
distinct pathways. We propose that, when R = phenyl, the
extended conjugation imparts stability to the munchnone
tautomer which then attacks the proximal CNO group. The
alkoxide species thus generated forms the lactone 11 with
concomitant oxazole ring cleavage. Cycloreversion of CO2 and
subsequent O-acylation completes the route to the dihydro-
isoindoles 6a,b. Conversely, 10 is destabilised when R = alkyl
and the munchnone undergoes ring–chain tautomerism to the N-
acyl ketene 12. Intramolecular acylation of the enamine
function affords the spirocycle 13. Oxetane ring formation and
subsequent ring cleavage of 14 effects the ring expansion to the
oxacinopyrrole system. It is noteworthy that the formation of
the oxacinopyrroles only occurs with the combination of an a-
alkyl amino acid and a cyclohexane-1,3-dione; replacement of
either one of these components results in the formation of the
pyrrole or isoindole as, for example, 9 which is derived from
2-hydroxymethylene-1-tetralone and glutamic acid 5-methyl
ester.
EtOAc in hexane, as colourless cubes from EtOAc–hexane, mp
=
152.5–153.5 °C, nmax(KBr)/cm21 2962, 1766, 1742, 1670, 1594, 1524,
1274, 1189 cm21; dH(CDCl3, 253 K) 0.82 (3H, d, J 6.6, CHCH3), 0.94 (3H,
d, J 6.6, CHCH3), 1.07 (3H, s, 7-CH3), 1.27 (3H, s, 7-CH3), 1.87 [1H, m, J
6.6, CH(CH3)2], 2.25 (1H, d, J 12.3, CH2), 2.37 (1H, d, J 12.3, CH2),
2.64–2.70 [1H, m, CH2CH(CH3)2], 2.65 (3H, s, NAc), 2.79–2.83 [1H, m,
CH2CH(CH3)2], 2.92 (1H, d, J 12.3, CH2), 2.99 (1H, d, J 12.3, CH2), 7.70
(1H, s, 1-H); dC(CDCl3, 299 K) 22.1, 23.5, 28.2, 29.4, 33.2, 34.6, 42.5, 53.4,
120.0, 122.3, 126.5, 137.4, 169.0, 169.4, 192.8. Found C, 66.85; H, 7.60; N,
4.55; M+ 305.1627. C17H23NO4 requires C, 66.85; H, 7.60; N, 4.60%; M+
305.1627.
1 G. B. Jones and B. J. Chapman, in Comprehensive Heterocyclic
Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven,
Pergamon, Oxford, 1996, vol. 2, p. 1.
2 G. W. Gribble, in Comprehensive Heterocyclic Chemistry II, ed. A. R.
Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1996,
vol. 2, p. 207.
3 (a) J. M. Patterson, Synthesis, 1976, 281; (b) R. Bonnett and S. A. North,
Adv. Heterocycl. Chem., 1981, 29, 341; (c) R. J. Sundberg, in
Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W.
Rees, Pergamon, Oxford, 1984, vol. 3, p. 313; (d) L. N. Sobenina, A. I.
Mikhaleva and B. A. Trofimov, Russ. Chem. Rev., 1989, 58, 163; (e)
R. A. Jones (ed.) Chem. Heterocycl. Compds., 1990, 48-1, 1; (f) H.
McNab and L. C. Monahan in, R. A. Jones (ed.) Chem. Heterocycl.
Compds., 1992, 48-2, 525; (g) P. Lue and J. V. Greenhill, Adv.
Heterocycl. Chem., 1996, 67, 207; (h) R. A. Mattocks, J. Chem. Soc.,
Perkin Trans. 1, 1978, 896.
O
O
R
R
4 R. J. Sundberg, in Comprehensive Heterocyclic Chemistry II, ed. A. R.
Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1996,
vol.2, p. 119.
O
O
O
R
–CO2
NAc
N
N
Ac
5 H. Pleninger and H. Husseine, Synthesis, 1970, 587; E. Campaigne,
G. M. Shutske and J. C. Payne, J. Heterocycl. Chem., 1977, 14, 329; S.
Mataka, K. Takahashi, Y. Tsuda and M. Tashiro, Synthesis, 1982, 157;
G. H. Walizei and E. Breitmaier, Synthesis, 1989, 337; J. B. Paine III,
J. R. Brough, K. R. Buller and E. E. Erikson, J. Org. Chem., 1987, 52,
3986; A. Alberola, J. M. Andrés, A. González, R. Pedrosa and M.
Vicente, J. Chem. Soc., Perkin Trans. 1, 1990, 2681; H. K. Hombrecher
and G. Horter, Synthesis, 1990, 389.
6 S. I. Zav’yalov, I. F. Mustafaeva, N. I. Aronova and N. N. Makhova, Izv.
Akad. Nauk SSSR, Ser. Khim. (Engl. Transl.), 1973, 2505.
7 N. J. Bach, E. C. Kornfeld, N. D. Jones, M. O. Chaney, D. E. Dorman,
J. W. Paschal, J. A. Clemens and E. B. Smalstig, J. Med. Chem., 1980,
23, 481; D. Berney, Helv. Chim. Acta, 1982, 65, 1694; V. Cecchetti, A.
Fravolini and F. Schiaffella, J. Heterocycl. Chem., 1982, 19, 1045;
M. A. Ansari and J. C. Craig, Synth. Commun., 1991, 21, 1971.
8 C. D. Gabbutt, J. D. Hepworth and B. M. Heron, J. Chem. Soc., Perkin
Trans. 1, 1992, 2603.
OAc
O
O
6b R = Ph
11
O
O
O
O
R
O
C
O
R
O
R
N
N
N
Ac
O
O
Ac
O
10
12
13
O–
O
R
O
N
O
9 N. L. Allinger, G. L. Wang and B. B. Dewhurst, J. Org. Chem., 1974,
39, 1730; G. L. Buchanan, Chem. Soc. Rev., 1988, 17, 91.
10 T. P. Smith, in Comprehensive Heterocyclic Chemistry II, ed. A. R.
Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon, Oxford, 1996,
vol. 9, p. 429.
NAc
R
O
O
Ac
11 R. Knorr and R. Huisgen, Chem. Ber., 1970, 103, 2598.
8 R = Bui
Scheme 3
14
Communication 8/09033E
290
Chem. Commun., 1999, 289–290