Communication
Dalton Transactions
3 C.-C. Hsu, C.-C. Lin, P.-T. Chou, C.-H. Lai, C.-W. Hsu,
C.-H. Lin and Y. Chi, J. Am. Chem. Soc., 2012, 134, 7715–
7724.
4 Y.-C. Chang, K.-C. Tang, H.-A. Pan, S.-H. Liu,
I. O. Koshevoy, A. J. Karttunen, W.-Y. Hung, M.-H. Cheng
and P.-T. Chou, J. Phys. Chem. C, 2013, 117, 9623–9632.
5 W. Y. Heng, J. Hu and J. H. K. Yip, Organometallics, 2007,
26, 6760–6768.
6 F. Geist, A. Jackel and R. F. Winter, Inorg. Chem., 2015, 54,
10946–10957.
7 P. Irmler and R. F. Winter, Dalton Trans., 2016, 45, 10420–
10434.
8 F. Geist, A. Jackel, P. Irmler, M. Linseis, S. Malzkuhn,
M. Kuss-Petermann, O. S. Wenger and R. F. Winter, Inorg.
Chem., 2017, 56, 914–930.
Fig. 4 Changes of UV/Vis/NIR spectra of BPtSPyr on oxidation (THF,
NBu4PF6, 293 K).
9 P. Irmler and R. F. Winter, Organometallics, 2018, 37, 235–
253.
10 W. Wu, J. Zhao, H. Guo, J. Sun, S. Ji and Z. Wang, Chem. –
Eur. J., 2012, 18, 1961–1968.
11 F. Zhong, A. Karatay, L. Zhao, J. Zhao, C. He, C. Zhang,
H. G. Yaglioglu, A. Elmali, B. Küçüköz and M. Hayvali,
Inorg. Chem., 2015, 54, 7803–7817.
12 J. Sun, F. Zhong, X. Yi and J. Zhao, Inorg. Chem., 2013, 52,
6299–6310.
13 W. Wu, J. Sun, X. Cui and J. Zhao, J. Mater. Chem. C, 2013,
1, 4577–4589.
Fig. 5 Calculated spin densities of (a) the radical cation and (b) the
radical anion of BPtSPyr.
14 B. Ma, P. I. Djurovich, M. Yousufuddin, R. Bau and
M. E. Thompson, J. Phys. Chem. C, 2008, 112, 8022–8031.
15 T. Tsuboi, D.-F. Huang, T. J. Chow and W. Huang, Opt.
Mater., 2014, 36, 1734–1738.
16 J. Hu, J. H. K. Yip, D.-L. Ma, K.-Y. Wong and W.-H. Chung,
Organometallics, 2009, 28, 51–59.
17 W. Wu, W. Wu, S. Ji, H. Guo and J. Zhao, Eur. J. Inorg.
Chem., 2010, 2010, 4470–4482.
18 M. A. Filatov, S. Karuthedath, P. M. Polestshuk,
S. Callaghan, K. J. Flanagan, M. Telitchko, T. Wiesner,
F. Laquai and M. O. Senge, Phys. Chem. Chem. Phys., 2018,
20, 8016–8031.
In summary, the BPtSPyr dyad combines several remarkable
features. It constitutes an extremely rare case of a compound
showing emissions from four different excited states and acts
as a powerful NIR emitter. Its emission profiles and colour can
be tuned by the excitation wavelength and solvent polarity
from deep red to almost white. The crucial role of the
pyrS•+−Pt-BDP•− charge-transfer state within the excited state
cascade was identified by TA spectroscopy, spectroelectro-
chemical methods and TD-DFT calculations.
19 X.-F. Zhang and N. Feng, Chem. – Asian J., 2017, 12, 2447–
2456.
Conflicts of interest
The authors declare no competing financial interests.
20 S. Ji, J. Ge, D. Escudero, Z. Wang, J. Zhao and
D. Jacquemin, J. Org. Chem., 2015, 80, 5958–5963.
21 M. R. Wasielewski, D. G. Johnson, W. A. Svec, K. M. Kersey
and D. W. Minsek, J. Am. Chem. Soc., 1988, 110, 7219–7221.
22 S.-H. Lee, A. G. Larsen, K. Ohkubo, Z.-L. Cai, J. R. Reimers,
S. Fukuzumi and M. J. Crossley, Chem. Sci., 2012, 3, 257–
269.
23 T. Higashino, T. Yamada, M. Yamamoto, A. Furube,
N. V. Tkachenko, T. Miura, Y. Kobori, R. Jono,
K. Yamashita and H. Imahori, Angew. Chem., Int. Ed., 2016,
55, 629–633.
Acknowledgements
This work was supported by Deutsche Forschungsge-
meinschaft (grant Wi1262/10-2) and the Swiss National
Science Foundation (grant number 200021_176780).
Notes and references
24 T. Shida and S. Iwata, J. Am. Chem. Soc., 1973, 95, 3473–
3483.
1 M. Kasha, Discuss. Faraday Soc., 1950, 9, 14–19.
2 C.-W. Hsu, C.-C. Lin, M.-W. Chung, Y. Chi, G.-H. Lee, 25 J. Maurer, M. Linseis, B. Sarkar, B. Schwederski,
P.-T. Chou, C.-H. Chang and P.-Y. Chen, J. Am. Chem. Soc.,
2011, 133, 12085–12099.
M. Niemeyer, W. Kaim, S. Záliš, C. Anson, M. Zabel and
R. F. Winter, J. Am. Chem. Soc., 2008, 130, 259–268.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2018