10.1002/cctc.201601496
ChemCatChem
FULL PAPER
[25]
[26]
[27]
Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li, Y.
Wang, ACS Catal. 2015, 5, 4783–4789.
Keywords: hydrogenation • cluster catalysis • molybdenum
cluster sulphides • nitroarenes • anilines
O. Verho, K. P. J. Gustafson, A. Nagendiran, C.-W. Tai, J.-E.
Bäckvall, ChemCatChem 2014, 6, 3153–3159.
For the molybdenum sulphide-catalyzed hydrogenation of
nitroarenes, see: a) S. Kamiguchi, K. Arai, K. Okumura, H. Iida, S.
Nagashima, T. Chihara, Appl. Catal. A Gen. 2015, 505, 417–421. b)
S. K. Srivastava, B. N. Avasthi, J. Mater. Sci. 1993, 28, 5032–5035.
c) D.-Y. Sun, B.-Z. Lin, B.-H. Xu, L.-W. He, C. Ding, Y.-L. Chen, J.
Porous Mater. 2008, 15, 245–251.
[1]
[2]
[3]
[4]
P. N. Rylander, Catalytic Hydrogenation in Organic Syntheses,
Academic Press, New York, 1979.
S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation
for Organic Synthesis, New York, 2001.
N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH, New
York, 2001.
[28]
B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with
Organometallic Compounds, Wiley-VCH, Weinheim, Germany,
2002.
H.-U. Blaser, U. Siegrist, H. Steiner, Aromatic Nitro Compounds:
Fine Chemicals through Heterogeneous Catalysis, Wiley-VCH,
Weinheim, 2001.
[29]
[30]
B. Plietker, Iron Catalysis in Organic Chemistry, Wiley-VCH,
Weinheim, 2008.
[5]
[6]
S. A. Lawerencem, Amines: Synthesis, Properties and Applications,
Cambridge University Press, Cambridge, 2004.
G. Wienhöfer, M. Baseda-Krüger, C. Ziebart, F. A. Westerhaus, W.
Baumann, R. Jackstell, K. Junge, M. Beller, Chem. Commun. 2013,
49, 9089.
C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104,
6217–6254.
[31]
[32]
C. Bolm, Nat. Chem. 2009, 1, 420–420.
S. Enthaler, K. Junge, M. Beller, Angew. Chemie Int. Ed. 2008, 47,
3317–3321.
[7]
G. Wienhöfer, I. Sorribes, A. Boddien, F. Westerhaus, K. Junge, H.
Junge, R. Llusar, M. Beller, J. Am. Chem. Soc. 2011, 133, 12875–
12879.
[33]
[34]
[35]
E. Nakamura, K. Sato, Nat. Mater. 2011, 10, 158–161.
K. Gopalaiah, Chem. Rev. 2013, 113, 3248–3296.
C. Bornschein, S. Werkmeister, B. Wendt, H. Jiao, E. Alberico, W.
Baumann, H. Junge, K. Junge, M. Beller, Nat. Commun. 2014, 5,
DOI 10.1038/ncomms5111.
[8]
A. Corma, C. González-Arellano, M. Iglesias, F. Sánchez, Appl.
Catal. A Gen. 2009, 356, 99–102.
[9]
Z. Yu, S. Liao, Y. Xu, B. Yang, D. Yu, J. Mol. Catal. A Chem. 1997,
120, 247–255.
[36]
[37]
M. R. Friedfeld, M. Shevlin, J. M. Hoyt, S. W. Krska, M. T. Tudge, P.
J. Chirik, Science 2013, 342, 1076–1080.
[10]
[11]
E. G. Chepaikin, M. L. Khidekel’, V. V. Ivanova, A. I. Zakhariev, D.
M. Shopov, J. Mol. Catal. 1980, 10, 115–119.
Q. Knijnenburg, A. D. Horton, H. van der Heijden, T. M. Kooistra, D.
G. H. Hetterscheid, J. M. M. Smits, B. de Bruin, P. H. M. Budzelaar,
A. W. Gal, J. Mol. Catal. A Chem. 2005, 232, 151–159.
G. Zhang, B. L. Scott, S. K. Hanson, Angew. Chemie Int. Ed. 2012,
51, 12102–12106.
S. Xu, X. Xi, J. Shi, S. Cao, J. Mol. Catal. A Chem. 2000, 160, 287–
292.
[12]
[13]
S. G. Harsy, Tetrahedron 1990, 46, 7403–7412.
A. Toti, P. Frediani, A. Salvini, L. Rosi, C. Giolli, J. Organomet.
Chem. 2005, 690, 3641–3651.
[38]
[39]
[40]
[41]
[42]
[43]
G. Zhang, K. V. Vasudevan, B. L. Scott, S. K. Hanson, J. Am. Chem.
Soc. 2013, 135, 8668–8681.
[14]
[15]
A. A. Deshmukh, A. K. Prashar, A. K. Kinage, R. Kumar, R.
Meijboom, Ind. Eng. Chem. Res. 2010, 49, 12180–12184.
A. Corma, P. Serna, P. Concepción, J. J. Calvino, J. Am. Chem.
Soc. 2008, 130, 8748–8753.
S. Monfette, Z. R. Turner, S. P. Semproni, P. J. Chirik, J. Am. Chem.
Soc. 2012, 134, 4561–4564.
C. J. Casewit, D. E. Coons, L. L. Wright, W. K. Miller, M. R. DuBois,
Organometallics 1986, 5, 951–955.
[16]
[17]
L. Liu, P. Concepción, A. Corma, J. Catal. 2016, 340, 1–9.
H.-U. Blaser, H. Steiner, M. Studer, ChemCatChem 2009, 1, 210–
221.
B. F. M. Kimmich, P. J. Fagan, E. Hauptman, W. J. Marshall, R. M.
Bullock, Organometallics 2005, 24, 6220–6229.
S. Namorado, M. A. Antunes, L. F. Veiros, J. R. Ascenso, M. T.
Duarte, A. M. Martins, Organometallics 2008, 27, 4589–4599.
P. M. Reis, B. Royo, Tetrahedron Lett. 2009, 50, 949–952.
P. M. Reis, P. J. Costa, C. C. Romão, J. A. Fernandes, M. J.
Calhorda, B. Royo, Dalt. Trans. 2008, 1727.
[18]
[19]
[20]
A. Corma, Science 2006, 313, 332–334.
P. Serna, M. Boronat, A. Corma, Top. Catal. 2011, 54, 439–446.
Y. Matsushima, R. Nishiyabu, N. Takanashi, M. Haruta, H. Kimura,
Y. Kubo, J. Mater. Chem. 2012, 22, 24124.
[44]
[45]
[21]
[22]
[23]
M. Makosch, W.-I. Lin, V. Bumbálek, J. Sá, J. W. Medlin, K.
Hungerbühler, J. A. van Bokhoven, ACS Catal. 2012, 2, 2079–2081.
H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S.
Miao, J. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634.
R. V. Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J.
Rabeah, H. Huan, V. Schunemann, A. Bruckner, M. Beller, Science
2013, 342, 1073–1076.
[46]
P. J. Baricelli, L. G. Melean, S. Ricardes, V. Guanipa, M. Rodriguez,
C. Romero, A. J. Pardey, S. Moya, M. Rosales, J. Organomet.
Chem. 2009, 694, 3381–3385.
[47]
[48]
[49]
A. Dybov, O. Blacque, H. Berke, Eur. J. Inorg. Chem. 2011, 2011,
652–659.
S. Chakraborty, O. Blacque, T. Fox, H. Berke, Chem. - A Eur. J.
2014, 20, 12641–12654.
[24]
S. Pisiewicz, D. Formenti, A.-E. Surkus, M.-M. Pohl, J. Radnik, K.
Junge, C. Topf, S. Bachmann, M. Scalone, M. Beller,
ChemCatChem 2016, 8, 129–134.
P. Buchwalter, J. Rosé, P. Braunstein, Chem. Rev. 2015, 115, 28–
126.
This article is protected by copyright. All rights reserved.