Please do not adjust margins
New Journal of Chemistry
Page 4 of 6
COMMUNICATION
Journal Name
1
2
3
4
5
6
7
8
9
2
(a) S. Y. Cai, Y. Tian, J. Zhang, Z. Liu, M. Lu, W. Weng and M.
Huang, Adv. Synth. Catal., 2018, 360D, O4I0: 8104.;10(3b9)/DY0.NJJia0n37,3M3H.
Chen, B. Huang, W. Jia, C. Yang and W. Xia, Org. Lett., 2018,
20, 5370; (c) H.-P. Deng, X.-Z. Fan, Z.-H. Chen, Q.-H. Xu and J.
Wu, J. Am. Chem. Soc., 2017, 139, 13579; (d) C. Le, Y. Liang, R.
W. Evans, X. Li and D. W. C. MacMillan, Nature, 2017, 547, 79;
(e) L. Marzo, I. Ghosh, F. Esteban and B. König, ACS Catal.
2016,
Tao and T. Murafuji, Angew. Chem. Int. Ed., 2016, 55, 9695;
(g) B. J. Shields and A. G. Doyle, J. Am. Chem. Soc., 2016, 138
12719; (h) M. S. Oderinde, M. Frenette, D. W. Robbins, B.
Aquila and J. W. Johannes, J. Am. Chem. Soc., 2016, 138
6, 6780; (f) S. Kamijo, G. Takao, K. Kamijo, M. Hirota, K.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
,
,
Scheme 7. Plausible reaction mechanism
1760; (i) W. L. Czaplyski, C. G. Na and E. J. Alexanian, J. Am.
Chem. Soc., 2016, 138, 13854; (j) D. Ravelli, S. Protti and M.
Fagnoni, Acc. Chem. Res., 2016, 49, 2232; (k) V. P. Ananikov,
The observed reactivities, with the addition of the above
investigations, point to a plausible reaction pathway outlined
in Scheme 7. Initially, the diaryliodonium salt 13, generated in
situ from the PhI(OCOCF3)2 and 1,3,5-trimethoxybenzene,
could readily react with the excited 4CzIPN, thus converting to
ACS Catal., 2015, 5, 1964; (l) M. Louillat-Habermeyer, R. Jin
and F. Patureau, W. Angew. Chem., Int. Ed., 2015, 54, 4102;
(m) S. J. Hwang, D. C. Powers, A. G. Maher, B. L. Anderson, R.
G. Hadt, S. L. Zheng, S. Chen and D. G. Nocera, J. Am. Chem.
Soc., 2015, 137, 6472; (n) H. Jiang, X. An, K. Tong, T. Zheng, Y.
Zhang and S. Yu, Angew. Chem., Int. Ed., 2015, 54, 4055; (o) J.
Davies, S. G. Booth, S. Essafi, R. A. W. Dryfe and D. Leonori,
Angew. Chem., Int. Ed., 2015, 127, 14223; (p) X. Hu, J. Chen
and W. Xiao, Angew. Chem., Int. Ed., 2017, 56, 1960.
the key stable iodanyl radical species E. Then, an event of
iodanyl-radical-enabled C-H bond abstraction would be
triggered on acetone to generate α-carbonyl alkyl radical as
well as the 2-iodo-1,3,5-trimethoxybenzene 14. Subsequently,
the newly generated α-carbonyl alkyl radical could participate
in the radical addition to the C=C double bonds of allylic
3
4
(a) C. Sun, B. Li and Z. Shi, Chem. Rev., 2011, 111, 1293; (b) L.
Ackermann, R. Vicente and A. R. Kapdi, Angew. Chem., Int.
Ed., 2009, 48, 9792; (c) C. Liu, H. Zhang, W. Shi and A. Lei,
Chem. Rev., 2011, 111, 1780.
alcohols to furnish the intermediate
events that involved 1,2-aryl migration,14 oxidation, and
deprotonation would take place on the intermediate
resulting in the formation of final 1,5-diketone, 2a
F. Finally, a sequence of
(a) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010, 110
,
F
,
1147; (b) C.-J. Li, Acc. Chem. Res., 2009, 42, 335; (c) R. G.
Bergman, Nature, 2007, 446, 391; (d) K. Godula and D.
Sames, Science, 2006, 312, 67; (e) C. S. Yeung and V. M. Dong,
Chem. Rev., 2011, 111, 1215.
.
In summary, we develop a reliable and practical method for
synthesis of 1,5-diketones directly from readily available
acetone and α-aryl allylic alcohols through the strategy of C-H
bond functionalization by means of photoredox catalysis. It
merits attention that the established method, compared with
the previous protocols, refrains from employing potentially
explosive peroxide and operates efficiently at room
temperature without prefunctionalization. Given the broadly
appreciated significance of 1,5-diketone substances in
chemical and biological contexts, it is envisioned these
discoveries would find applications and motivate further
studies in due course.
5
(a) R. B. Mitra and G. B. Reddy, Synthesis, 1989, 694; (b) M. E.
Jung, Tetrahedron, 1976, 32, 3; (c) R. E. Gawley, Synthesis,
1976, 777; (d) S. Ramachandran and M. S. Newman, Org.
Synth., 1973, 5, 486.
6
7
(a) W. M. Owton, P. T. Gallagher and M. Brunavs, Synth.
Commun., 1992, 22, 351; (b) C. Seoane, J. L. Soto and M.
Quintéro, Heterocycles, 1980, 14, 337.
(a) J.-H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song and J.-H. Li,
Angew. Chem., Int. Ed., 2014, 53, 6650; (b) L. Debien and S. Z.
Zard, J. Am. Chem. Soc., 2013, 135, 3808; (c) K. K. Goh, S. Kim
and S. Z. Zard, Org. Lett., 2013, 15, 4818; (d) T. Nishikata, Y.
Noda, R. Fujimoto and T. Sakashita, J. Am. Chem. Soc., 2013,
135, 16372; (e) C. Liu, S. Tang, D. Liu, J. Yuan, L. Zheng, L.
Meng and A. Lei, Angew. Chem., Int. Ed., 2012, 51, 3638; (f)
H. Jiang, Y. Cheng, R. Wang, M. Zheng, Y. Zhang and S. Yu,
Angew. Chem., Int. Ed., 2013, 52, 13289.
Acknowledgements
The work is supported by the National Natural Science
Foundation of China (No. 21502086 and No. 41575118),
Natural Science Foundation of Fujian Province (No.
2019J01744), Outstanding Youth Science Foundation of Fujian
Province (No. 2015J06009), and Program for Excellent Talents
of Fujian Province.
8
9
(a) W. S. Rapson and R. Robinson, J. Chem. Soc., 1935, 1285;
(b) O. Wichterle, J. Procházka and J. Hofman, Coll. Czech.
Chem. Commun., 1948, 13, 300.
(a) Y. Li, B. Liu, X. Ouyang,; R.-J. Song and J.-H. Li, Org. Chem.
Front. 2015, 2, 1457; (b) X. Chu, H. Meng, Y. Zi, X. Xu and S.-J.
Ji, Chem. Eur. J., 2014, 20, 17198.
10 (a) T. L. Yang, M. Lu, Z. Lin, M. Huang and S. Y. Cai, Org.
Biomol. Chem., 2019, 17, 449; (b) M. Lu, Z. Lin, S. Chen, H.
Chen, M. Huang, and S. Y. Cai, Org. Lett., 2019, 21, 9929; (c)
M. Lu, H. Qin, Z. Lin, H. Huang, W. Weng and S. Y. Cai, Org.
Lett., 2018, 20, 7611; (d) S. Y. Cai, Y. Xu, D. Chen, L. Li, Q.
Chen, M. Huang, W. Weng, Org. Lett., 2016, 18, 2990; (e) S. Y.
Cai, X. Y. Zhao, X. B. Wang, Q. S. Liu, Z. G. Li and D. Z. Wang,
Angew. Chem., Int. Ed., 2012, 51, 8050.
11 For selected reviews on hypervalent iodine chemistry: (a) X.
Wang and A. Studer, Acc. Chem. Res., 2017, 50, 1712; (b) A.
Yoshimura and V. V. Zhdankin, Chem. Rev., 2016, 116, 3328;
(c) Y. Li, P. Hari, M. V. Vita and J. Waser, Angew. Chem., Int.
Ed., 2016, 55, 4436.
Notes and references
1
For selected reviews on photo-redox catalysis, see: (a) J. K.
Matsui, S. B. Lang, D. R. Heitz and G. A. Molander, ACS Catal.,
2017, 7, 2563; (b) N. A. Romero and D. A. Nicewicz, Chem.
Rev., 2016, 116, 10075; (c) M. D. Karkas, J. A. Jr. Porco, C. R. J.
Stephenson, Chem. Rev., 2016, 116, 9683; (d) J. Xuan, Z.-G.
Zhang and W.-J. Xiao, Angew. Chem., Int. Ed., 2015, 54
15632; (e) D. M. Schultz and T. P. Yoon, Science, 2014, 343
1239176; (f) C. K. Prier, D. A. Rankic and D. W. C. MacMillan,
Chem. Rev., 2013, 113, 5322; (g) X. Yu, Q. Zhao, J. Chen, W.
Xiao and J. Chen, Acc. Chem. Res., 2020, 53, 1066.
,
,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins