Biomimetic Asymmetric Reduction of Quinazolinones
Chin. J. Chem.
(R)-H1 (5.7 mg, 0.02 mmol,) and quinazolinones 1 (0.20 mmol) in
trifluorotoluene (3.0 mL) was stirred at room temperature for 5
min in glove box and then the mixture was transferred to an
autoclave. The reduction was performed at room temperature
under hydrogen gas (500 psi) for 36-72 h. After careful release of
hydrogen gas, the autoclave was opened and the reaction mixture
was directly purified by column chromatography on silica gel
using dichloromethane/methanol as eluent to give the desired
products 2. The enantiomeric excesses were determined by chiral
HPLC.
Chevalier, E.; Descours, A.; Berlioz-Seux, F.; Berna, P.; Li, M.
Spiroquinazolinones as Novel, Potent, and Selective PDE7 inhibitors. Part
2: Optimization of 5,8-disubstituted Derivatives. Bioorg. Med. Chem. Lett.
2004, 14, 4627-4631. (h) Hasegawa, H.; Muraoka, M.; Ohmori, M.;
Matsui, K.; Kojima, A. A Novel Class of Sodium/Calcium Exchanger
Inhibitor: Design, Synthesis, and Structure-activity Relationships of
3,4-dihydro -2(1H)-quinazolinone Derivatives. Bioorg. Med. Chem. 2005,
13, 3721-3735. (i) Hasegawa, H.; Muraoka, M.; Ohmori, M.; Matsui, K.;
Kojima, A. Design, Synthesis, and Structure–Activity Relationships of
3,4-Dihydropyridopyrimidin-2(1H)-one Derivatives as a Novel Class of
Sodium/Calcium Exchanger Inhibitor. Chem. Pharm. Bull. 2005, 53
1236-1239. (j) Hasegawa, H.; Muraoka, M.; Matsui, K.; Kojima, A. A Novel
Class of Sodium/Calcium Exchanger Inhibitors: Design, Synthesis, and
Structure–activity Relationships of 4-phenyl-3-(piperidin-4-yl)-3,4-dihydro
-2(1H)-quinazolinone Derivatives. Bioorg. Med. Chem. Lett. 2006, 16,
727-730. (k) Daga, P. R.; Doerksen, R. J. Stereoelectronic Properties of
Spiroquinazolinones in Differential PDE7 Inhibitory Activity. J. Comput.
Chem. 2008, 29, 1945-1954. (l) Uruno, Y.; Konishi, Y.; Suwa, A.; Takai, K.;
Tojo, K.; Nakako, T.; Sakai, M.; Enomoto, T.; Matsuda, H.; Kitamura, A.;
Sumiyoshi, T. Discovery of Dihydroquinazolinone Derivatives as Potent,
Selective, and CNS-penetrant M1 and M4 Muscarinic Acetylcholine
Receptors Agonists. Bioorg. Med. Chem. Lett. 2015, 25, 5357-5361. (m)
Zhou, J.; Zhang, H.; Yang, Y.; Zhao, L.; Zhang, J.; Li, X.; Wu, Z.
CN107056771, 2017.
The full experimental details can be found in the Supporting
Information
Supporting Information
The supporting information for this article is available on the
Acknowledgement
Financial support from the National Natural Science Foundation
of China (21532006, 21690074) and Chinese Academy of Sciences
(XDB17020300, QYZDJ-SSW-SLH035) is acknowledged.
References
[2] Xie, H.; Zhang, Y.; Zhang, S.; Chen, X.; Wang, W. Bifunctional Cinchona
Alkaloid Thiourea Catalyzed Highly Efficient, Enantioselective Aza-Henry
Reaction of Cyclic Trifluoromethyl Ketimines: Synthesis of Anti-HIV Drug
DPC 083. Angew. Chem. Int. Ed. 2011, 50, 11773-11776.
[3] Yuan, H.-N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J.-A.
Hydrogen-Bond-Directed Enantioselective Decarboxylative Mannich
Reaction of β-Ketoacids with Ketimines: Application to the Synthesis of
Anti-HIV Drug DPC 083. Angew. Chem. Int. Ed. 2013, 52, 3869-3873.
[4] Zhang, F.-G.; Zhu, X.-Y.; Li, S.; Nie, J.; Ma, J.-A. Highly Enantioselective
Organocatalytic Strecker Reaction of Cyclic N-acyl trifluoromethyl-
ketimines: Synthesis of Anti-HIV drug DPC 083. Chem. Commun. 2012, 48,
11552-11554.
[5] Wang, P.-S.; Shen, M.-L.; Wang, T.-C.; Lin, H.-C.; Gong, L.-Z. Access to
Chiral Hydropyrimidines through Palladium-Catalyzed Asymmetric Allylic
C−H Amination. Angew. Chem. Int. Ed. 2017, 56, 16032-16036.
[6] Lu,Y.-N.; Lan, J.-P.; Mao, Y.-J.; Wang, Y.-X.; Mei, G.-J.; Shi, F. Catalytic
Asymmetric de novo Construction of Dihydroquinazolinone Scaffolds via
Enantioselective Decarboxylative [4+2] Cycloadditions. Chem. Commun.
2018, 54, 13527-13530.
[7] (a) Huffman, M. A.; Yasuda, N.; Decamp, A. E.; Grabowski, E. J. J. Lithium
Alkoxides of Cinchona Alkaloids as Chiral Controllers for Enantioselective
Acetylide Addition to Cyclic N-Acyl Ketimines. J. Org. Chem. 1995, 60,
1590-1594. (b) Magnus, N. A.; Confalone, P. N.; Storace, L. A New
Asymmetric 1,4-addition Method: Application to the Synthesis of the HIV
Non-nucleoside Reverse Transcriptase Inhibitor DPC 961. Tetrahedron
Lett. 2000, 41, 3015-3019. (c) Kauffman, G. S.; Harris, G. D.; Dorow, R. L.;
Stone, B. R. P.; Parsons Jr, R. L.; Pesti, J. A.; Magnus, N. A.; Fortunak, J. M.;
Confalone, P. N.; Nugent, W. A. An Efficient Chiral Moderator Prepared
from Inexpensive (+)-3-Carene:ꢀ Synthesis of the HIV-1 Non-Nucleoside
Reverse Transcriptase Inhibitor DPC 963. Org. Lett. 2000, 2, 3119-3121.
(d) Magnus, N. A.; Confalone, P. N.; Storace, L.; Patel, M.; Wood, C. C.;
Davis, W. P.; Parsons Jr. R. L. General Scope of 1,4-Diastereoselective
[1] For reviews see: (a) Hemalatha, K.; Madhumitha, G. Synthetic Strategy
with Representation on Mechanistic Pathway for the Therapeutic
Applications of Dihydroquinazolinones. Eur. J. Med Chem. 2016, 123,
596-630. For selected examples, see: (b) Tucker, T. J.; Lyle, T. A.;
Wiscount, C. M.; Britcher, S. F.; Young, S. D.; Sanders, W. M.; Lumma, W.
C.; Goldman, M. E.; O’ Brien, J. A.; Ball, R. G.; Homnick, C. F.; Schleif, W.
A.; Emini, E. A.; Huff, J. R.; Anderson, P. S. Synthesis of a Series of
4-(Arylethynyl)- 6-chloro-4-cyclopropyl-3,4-dihydroquinazolin-2(1H)-ones
as Novel Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. J. Med.
Chem. 1994, 37, 2437-2444. (c) Corbett, J. W.; Ko, S. S.; Rodgers, J. D.;
Jeffrey, S.; Bacheler, L. T.; Klabe, R. M.; Diamond, S.; Lai, C.-M.; Rabel, S.
R.; Saye, J. A.; Adams, S. P.; Trainor, G. L.; Anderson, P. S.;
Erickson-Viitanen, S. K. Expanded-Spectrum Nonnucleoside Reverse
Transcriptase Inhibitors Inhibit Clinically Relevant Mutant Variants of
Human Immunodeficiency Virus Type 1. Antimicrob. Agents Chemother.
1999, 43, 2893-2897. (d) Corbett,J. W.; Ko, S. S.; Rodgers, J. D.; Gearhart,
L. A.; Magnus, N. A.; Bacheler, L. T.; Diamond, S.; Jeffrey, S.; Klabe, R. M.;
Cordova, B. C.; Garber, S.; Logue, K.; Trainor, G. L.; Anderson, P. S.;
Erickson-Viitanen, S. K. Inhibition of Clinically Relevant Mutant Variants of
HIV-1 by Quinazolinone Non-Nucleoside Reverse Transcriptase Inhibitors.
J. Med. Chem. 2000, 43, 2019-2030. (e) Hasegawa, H.; Muraoka, M.;
Matsuia, K.; Kojima, A. Discovery of A Novel Potent Na+/Ca2+ Exchanger
Inhibitor: Design, Synthesis and Structure–activity Relationships of
3,4-dihydro- 2(1H)-quinazolinone Derivatives. Bioorg. Med. Chem. Lett.
2003, 13, 3471-3475. (f) Lorthiois, E.; Bernardelli, P.; Vergne, F.; Oliveira,
C.; Mafroud, A.; Proust, E.; Heuze, L.; Moreau, F.; Idrissi, M.; Tertre, A.;
Bertin, B.; Coupe, M.; Wrigglesworth, R.; Descours, A.; Soulard, P.; Berna,
P. Spiroquinazolinones as Novel, Potent, and Selective PDE7 Inhibitors.
Part 1. Bioorg. Med. Chem. Lett. 2004, 14, 4623-4626. (g) Bernardelli, P.;
Lorthiois, E.; Vergne, F.; Oliveira, C.; Mafroud, A.; Proust, E.; Pham, N.;
Ducrot, P.; Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.;
Chin. J. Chem. 2019, 37, XXX-XXX
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This article is protected by copyright. All rights reserved.