Journal of the American Chemical Society
Page 4 of 5
shows the Rh–C distance to the Phꢀsubstituted allylic
1
2
3
4
5
6
7
8
2865. (l) Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S.
J. Am. Chem. Soc. 2015, 137, 15668–15671. (m) Friis, S. D.; Pirnot,
M. T.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 8372–8375.
terminus (2.281(5)) is 0.10 Å longer than the correꢀ
sponding distance to the Meꢀsubstituted terminus
(2.181(5)). These values are inconsistent with similar
allyl C27–C28/C28–C29 bond lengths, suggesting the
distortion is caused by sterics of the phenyl group.
Also, the resulting observed major (S)ꢀenantiomer
formed in the catalytic reactions must occur via addiꢀ
tion of indole to the least hindered allyl terminus.
(2) (a) Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am. Chem.
Soc. 2004, 126, 7192–7193. (b) O’Malley, S. J.; Tan, K. L.; Watzke,
A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127,
13496–13497. (c) Wilson, R. M.; Thalji, R. K.; Bergman, R. G.;
Ellman, J. A. Org. Lett. 2006, 8, 1745–1747. (d) Harada, H.; Thalji,
R. K.; Bergman, R. G.; Ellman, J. A. J. Org. Chem. 2008, 73, 6772–
6779. (e) Sevov, C. S.; Hartwig, J. F. J. Am. Chem. Soc. 2013, 135,
2116–2119. (f) Shibata, T.; Shizuno, T. Angew. Chem. Int. Ed. 2014,
53, 5410–5413. (g) Song, G.; O, W. W. N.; Hou, Z. J. Am. Chem.
Soc. 2014, 136, 12209–12212. (h) Shirai, T.; Yamamoto, Y. Angew.
Chem. Int. Ed. 2015, 54, 9894–9897. (i) Shibata, T.; Ryu, N.; Takano,
H. Adv. Synth. Catal. 2015, 357, 1131–1135. (j) Lee, P.ꢀS.; Yoshikai,
N. Org. Lett. 2015, 17, 22–25. (k) Hatano, M.; Ebe, Y.; Nishimura,
T.; Yorimitsu, H. J. Am. Chem. Soc. 2016, 138, 4010–4013.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Control reactions confirmed catalytic diene hydroaryꢀ
lation in the presence of 5 mol % 19 and 5 mol %
NaBArF results in >98% conv to 10 in 8:1 rr and
4
89:11 er. Notably, without NaBArF 10 is formed in
4
6:1 rr, and 85:15 er, demonstrating the additive effect
of Na salts in obtaining high rr and er. Furthermore,
the stoichiometric reaction between 19 and 9 at 35 °C
in CH2Cl2 results in <2% conv to 10.15
(
3
) Roberts, C. C.; Matías, D. M.; Goldfogel, M. J.; Meek, S. J. J.
Am. Chem. Soc. 2015, 137, 6488–6491.
(4) For a related Rhꢀcatalyzed hydroarylation promoted by αꢀ
dicationic bidentate phosphines, see: Gu, L.; Wolf, L. M.; Zieliński,
A.; Thiel, W.; Alcarazo, M. J. Am. Chem. Soc. 2017, 139, 4948–4953.
In summary, we have developed the first chiral CDC
ligand that promotes enantioselective Rhꢀcatalyzed
hydroarylation of terminal and internal 1,3ꢀdienes.
Further studies of other (CDC)ꢀRhꢀcatalyzed enantiꢀ
oselective hydrofunctionalizations are in progress.
(
(
5
6
) Cyclic bentꢀallenes are a subclass of carbodicarbenes.
) For a review of carbon(0) ligands, see: (a) Melaimi, M.; Soleilꢀ
havoup, M.; Bertrand, G. Angew. Chem. Int. Ed. 2010, 49, 8810–
8849. For examples of transition metal catalysis, see: (b) Goldfogel,
M. J.; Roberts, C. C.; Meek, S. J. J. Am. Chem. Soc. 2014, 136, 6227–
6230. Hsu, Y.ꢀC.; Shen, J.ꢀS.; Lin, B.ꢀC.; Chen, W.ꢀC.; Chan, Y.ꢀT.;
Ching, W.ꢀM.; Yap, G. P. A.; Hsu, C.ꢀP.; Ong, T.ꢀG. Angew. Chem.
Int. Ed. 2015, 54, 2420–2424. (d) Pranckevicius, C.; Fan, L.; Stephan,
D. W. J. Am. Chem. Soc. 2015, 137, 5582–5589. (e) Goldfogel, M. J.;
Meek, S. J. Chem. Sci. 2016, 7, 4079–4084. (f) Goldfogel, M. J.;
Roberts, C. C.; Manan, R. S.; Meek, S. J. Org. Lett. 2017, 19, 90–93.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures and spectral
and analytical data for all products. This material is available free
(7) (a) Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. An-
AUTHOR INFORMATION
gew. Chem. Int. Ed. 2008, 47, 3206–3209. (b) Lavallo, V.; Dyker, C.
A.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2008, 47,
5411–5414. (c) Melaimi, M.; Parameswaran, P.; Donnadieu, B.;
Frenking, G.; Bertrand, G. Angew. Chem. Int. Ed. 2009, 48, 4792–
4795. (d) Fernández, I.; Dyker, C. A.; DeHope, A.; Donnadieu, B.;
Frenking, G.; Bertrand, G. J. Am. Chem. Soc. 2009, 131, 11875–
11881. (e) Chen, W.ꢀC.; Hsu, Y.ꢀC.; Lee, C.ꢀY.; Yap, G. P.; Ong, T.ꢀ
G. Organometallics 2013, 32, 2435–2442.
Corresponding Author
Author Contributions
‡J.S.M. and C.C.R. contributed equally.
(8
) For examples of electrophilic metalꢀ(η3ꢀallyl) species generated
Notes
Authors declare no competing financial interests.
by M–H additions to 1,3ꢀdienes, see: (a) Takahashi, K.; Miyake, A.;
Hata, G. Bull. Chem. Soc. Jpn. 1972, 45, 1183−1191. (b) Andell, O.
S.; Bäckvall, J. E.; Moberg, C. Acta Chem. Scand. 1986, B 40,
184−189. (c) Mignani, G.; Morel, D.; Colleuille, Y. Tet. Lett. 1985,
26, 6337–6340. For an overview of Rhꢀcatalyzed allylations, see: (d)
Koschker, P.; Breit, B. Acc. Chem. Res. 2016, 49, 1524–1536.
ACKNOWLEDGMENT
Financial support was provided by the NSF (CHEꢀ1665125) and
University of North Carolina. C.C.R. is an NSF graduate research
fellow. We are grateful to M. Brookhart for helpful discussions
and R. Sommer for assistance obtaining the Xꢀray structure of 19.
(
9
) Leitner, A.; Larsen, J.; Steffens, C.; Hartwig, J. F. J. Org.
Chem. 2004, 69, 7552–7557.
10) Pd: (a) Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem.
(
REFERENCES
Soc. 2001, 123, 4366–4367. (b) Adamson, N. J.; Hull, E.; Malꢀ
colmson, S. J. J. Am. Chem. Soc. 2017, 139, 7180–7183. Rh: (c)
Yang, X.ꢀH.; Dong, V. M. J. Am. Chem. Soc. 2017, 139, 1774–1777.
(1) (a) Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801–3804.
(b) Liu, C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935–1938. (c)
Pattison, G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132,
14373–14375. (d) Bexrud, J.; Lautens, M. Org. Lett. 2010, 12, 3160–
3163. (e) Saxena, A.; Lam, H. W. Chem. Sci. 2011, 2, 2326. (f) Poꢀ
dhajsky, S. M.; Iwai, Y.; CookꢀSneathen, A.; Sigman, M. S. Tetrahe-
dron 2011, 67, 4435–4441. (g) Werner, E. W.; Mei, T.ꢀS.; Burckle, A.
J.; Sigman, M. S. Science 2012, 338, 1455–1458. (h) Mei, T.ꢀS.;
Werner, E. W.; Burckle, A. J.; Sigman, M. S. J. Am. Chem. Soc. 2013,
135, 6830–6833. (i) So, C. M.; Kume, S.; Hayashi, T. J. Am. Chem.
Soc. 2013, 135, 10990–10993. (j) Mei, T.ꢀS.; Patel, H. H.; Sigman, M.
S. Nature 2014, 508, 340–344. (k) Roy, I. D.; Burns, A. R.; Pattison,
G.; Michel, B.; Parker, A. J.; Lam, H. W. Chem. Commun. 2014, 50,
(
11) For a recent related enantioselective hydroarylation of alꢀ
kynes, see: Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V.
M. J. Am. Chem. Soc. 2017, 139, 10641–10644.
(
(
(
12) Stereochemistry determined as (S) enantiomer.
13) See Supporting Information for details.
14) van Haaren, R. J.; Zuidema, E.; Fraanje, J.; Goubitz, K.; Kaꢀ
mer, P. C.; van Leeuwen, P. W.; van Strijdonck, G. P. Comptes Ren-
dus Chimie 2002, 5, 431–440.
(
15) For a related observation of Niꢀ(η3ꢀallyl) reactivity in hyꢀ
droamination, see: Pawlas, J.; Nakao, Y.; Kawatsura, M.; Hartwig, J.
F. J. Am. Chem. Soc. 2002, 124, 3669–3679.
ACS Paragon Plus Environment