Communication
Green Chemistry
epoxide products proved susceptible to hydrolysis. The syr- 11 E. Breitmaier, Terpenes: Flavours, Fragrances, Pharmaca,
inges were pumped into the 50 °C heated static mixing reactor Pheromones, John Wiley & Sons, 2006.
using syringe pumps at a rate of 13.5 mL h−1, with port 12 T. Stößer, C. Li, J. Unruangsri, P. K. Saini, R. J. Sablong,
sampling carried out after a combined 7.5 mL of reaction
mixture had passed into the reactor (allowing for steady state
M. A. R. Meier, C. K. Williams and C. Koning, Polym.
Chem., 2017, 8, 6099–6105.
equilibration). 1H NMR spectroscopic analysis of the organic 13 W. B. Cunningham, J. D. Tibbetts, M. Hutchby,
layer allowed conversion levels and selectivities to be calcu-
lated. The organic layer of the preparative limonene epoxi-
K. A. Maltby, M. G. Davidson, U. Hintermair, P. Plucinski
and S. D. Bull, Green Chem., 2020, 22, 513–524.
dation reaction was purified by distillation (or column chrom- 14 A. Mouret, L. Leclercq, A. Muhlbauer and V. Nardello-Rataj,
atography) to give 9.0 g of (+)-limonene 1,2-oxide as a pale- Green Chem., 2014, 16, 269–278.
yellow oil. The solid catalyst residue from this reaction was dis- 15 C. Venturello, E. Alneri and M. Ricci, J. Org. Chem., 1983,
solved in a fresh batch of limonene and the flow epoxidation 48, 3831–3833.
reaction repeated under identical conditions to give a second 16 A. L. Villa, B. F. Sels, D. E. De Vos and P. A. Jacobs, J. Org.
batch of limonene oxide in 83% conversion.
Chem., 1999, 64, 7267–7270.
17 K. Sato, M. Aoki, M. Ogawa, T. Hashimoto, D. Panyella and
R. Noyori, Bull. Chem. Soc. Jpn., 1997, 70, 905–915.
18 K. Sato, M. Aoki, M. Ogawa, T. Hashimoto and R. Noyori,
J. Org. Chem., 1996, 61, 8310–8311.
19 Large scale batch epoxidation of limonene requires careful
cooling to keep reaction temperatures below 30 °C and
slow dropwise addition of H2O2 to prevent potentially
explosive thermal runaway reactions from occurring, see:
ref. 13 for details.
20 J. C. Pastre, D. L. Browne and S. V. Ley, Chem. Soc. Rev.,
2013, 42, 8849–8869.
21 L. de C. Alves, A. L. Desiderá, K. T. De Oliveira, S. Newton,
S. V. Ley and T. J. Brocksom, Org. Biomol. Chem., 2015, 13,
7633–7642.
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
We would like to thank EPSRC for funding through “Terpene-
based Manufacturing for Sustainable Chemical Feedstocks”
EP/K014889 and the Centre for Doctoral Training in
Sustainable Chemical Technologies (EP/L016354/1). Södra
Forestry Cooperative are thanked for supplying an authentic
industrial sample of CST.
22 W. Yuan, S. Zhou, Y. Jiang, H. Li and H. Zheng, J. Flow
Chem., 2020, 10, 227–234.
23 D. D. Plaza, V. Strobel, P. K. K. Heer, A. B. Sellars,
S. Hoong, A. J. Clark and A. A. Lapkin, J. Chem. Technol.
Biotechnol., 2017, 92, 2254–2266.
24 W. He, Z. Fang, D. Ji, K. Chen, Z. Wan, X. Li, H. Gan,
S. Tang, K. Zhang and K. Guo, Org. Process Res. Dev., 2013,
17, 1137–1141.
Notes and references
1 N. Tsolakis, W. Barn, J. S. Srai and M. Kumar, J. Cleaner
Prod., 2019, 222, 802–822.
2 W. Schwab, C. Fuchs and F. C. Huang, Eur. J. Lipid Sci.
Technol., 2013, 115, 3–8.
3 M. Golets, S. Ajaikumar and J. P. Mikkola, Chem. Rev., 25 F. Mashhadi, A. Habibi and K. Varmira, Ind. Crops Prod.,
2015, 115, 3141–3169. 2018, 113, 324–334.
4 A. J. D. Silvestre and A. Gandini, in Terpenes: Major Sources, 26 C. Wiles, M. J. Hammond and P. Watts, Beilstein J. Org.
Properties and Applications in Monomers, Polymers and Chem., 2009, 5, 27.
Composites from Renewable Resources, ed. M. N. Belgacem 27 Y. Zhou, W. He, Z. Fang and K. Guo, ChemistrySelect, 2018,
and A. Gandini, Elsevier, Amsterdam, 2008, ch. 2, pp.
17–38.
5 M. GScheidmeier and H. Fleig, Turpentines, in Ullman’s
Encyclopaedia of Industrial Chemistry, Wiley, 2012, pp.
537–550.
6 J. D. Tibbetts and S. D. Bull, Green Chem., 2021, 21, 597.
7 J. D. Tibbetts and S. D. Bull, Adv. Sustainable Syst., 2021, 5,
2000292.
8 G. Sienel, R. Rieth and K. T. Rowbottom, Epoxides, in
Ullmann’s Encyclopedia of Industrial Chemistry, 2012, pp.
139–154.
3, 13530–13533.
28 S. Ahn, S. L. Nauert, K. E. Hicks, M. A. Ardagh,
N. M. Schweitzer, O. K. Farha and J. M. Notestein, ACS
Catal., 2020, 10, 2817–2825.
29 For previous flow epoxidation reactions of monoterpene
substrates under different conditions, see: (a) Epoxidation
of α-/β-pinene, camphene and limonene using an
N-hydroxyphthalimide catalyst, molecular oxygen and 3
equiv. acetaldehyde in an oscillating disc reactor under
Minisci radical conditions, ref: R. Spaccini, L. Liguori,
C. Punta and H. R. Bjørsvik, ChemSusChem, 2012, 5, 261–
265; (b) Mono-epoxidation of limonene using a polybenzi-
9 R. Reeves and M. Lawrence, Epoxides, Synthesis, Reactions
and Uses, Nova Science, 2017.
t
midazole/molybdenum catalyst and 4 equiv. of BuOOH in
10 N. Ravasio, F. Zaccheria, M. Guidotti and R. Psaro, Top.
Catal., 2004, 27, 157–168.
a flow reactor, ref: K. Ambroziak, R. Mbeleck, B. Saha and
D. C. Sherrington, WO2011/012869A2, 2011.
5454 | Green Chem., 2021, 23, 5449–5455
This journal is © The Royal Society of Chemistry 2021