did not produce a better gelator, optimizing the oxidation and
gelation rates, as well as the reaction volume and container
size, improved both the detection limit and response time.
Overall, we believe that this sensor is complementary to the
traditional colorimetric and fluorescent approaches used in
TATP detection, with the added advantages of unambiguous
signal read-out and no instrumentation needed.
8 (a) K. Brenzinger, Z. Phys. Chem., 1892, 16, 552–588; (b) See also:
R. A. Gortner and W. F. Hoffman, J. Am. Chem. Soc., 1921, 43,
2199–2202(c) C. G. L. Wolf and E. K. Rideal, Biochem. J., 1922,
16, 548–555.
9 M. Matteucci, G. Bhalay and M. Bradley, J. Pept. Sci., 2004, 10,
318–325.
10 For examples of other disulfide-based gelators, see: (a) L. Milanesi,
C. A. Hunter, N. Tzokova, J. P. Waltho and S. Tomas, Chem.–
Eur. J., 2011, 17, 9753–9761; (b) R. P. Lyon and W. M. Atkins,
J. Am. Chem. Soc., 2001, 123, 4408–4413.
11 D. Armitt, P. Zimmermann and S. Ellis-Steinborner, Rapid Commun.
Mass Spectrom., 2008, 22, 950–958.
We thank the Office of Naval Research (N00014-09-1-0848)
and 3M for support of this work. A. J. M. thanks the Alfred P.
Sloan Foundation for a research fellowship.
12 Although thiol 1 is stable for months under ambient conditions in
the solid state, it slowly undergoes oxidation to disulfide 2 in
MeOH (e.g., 35% conversion after 21 days). When TsOH is
present, a competing esterification reaction occurs (see ESIw).
13 Although the rational design of gelators remains a challenge, some
of the key factors relevant to gelation are being uncovered. For
recent examples, see: (a) H. Xu, J. Song, T. Tian and R. Feng, Soft
Matter, 2012, 8, 3478–3486; (b) M. Raynal and L. Bouteiller,
Chem. Commun., 2011, 47, 8271–8273; (c) M. L. Muro-Small,
J. Chen and A. J. McNeil, Langmuir, 2011, 27, 13248–13253;
(d) J. Chen, J. W. Kampf and A. J. McNeil, Langmuir, 2010, 26,
13076–13080; (e) A. R. Hirst and D. K. Smith, Langmuir, 2004, 20,
10851–10857.
14 For recent examples of halogenated peptide-based gelators, see:
(a) D. M. Ryan, S. B. Anderson and B. L. Nilsson, Soft Matter,
2010, 6, 3220–3231; (b) D. M. Ryan, S. B. Anderson,
F. T. Senguen, R. E. Youngman and B. L Nilsson, Soft Matter,
2010, 6, 475–479.
15 Elucidating the origin of these structure-property relationships was
difficult because X-ray quality single-crystals could not be obtained
for any of these compounds.
Notes and references
1 For recent reviews, see: (a) Y. Salinas, R. Martı
M. D. Marcos, F. Sancenon, A. M. Costero, M. Parra and
S. Gil, Chem. Soc. Rev., 2012, 41, 1261–1296; (b) M. Makinen,
nez-Manez,
´ ´
´
¨
M. Nousiainen and M. Sillanpaa, Mass Spectrom. Rev., 2011, 30,
¨
¨
940–973; (c) M. E. Germain and M. J. Knapp, Chem. Soc.
Rev., 2009, 38, 2543–2555; (d) S. Singh, J. Hazard. Mater., 2007,
144, 15–28; (e) D. S. Moore, Rev. Sci. Instrum., 2004, 75,
2499–2512.
2 M. Jacoby, Chem. Eng. News, 2009, 87(22), 10–13.
3 For reviews on sensing peroxide-based explosives, see: (a) R. M. Burks
and D. S. Hage, Anal. Bioanal. Chem., 2009, 395, 301–313;
(b) R. Schulte-Ladbeck, M. Vogel and U. Karst, Anal. Bioanal.
Chem., 2006, 386, 559–565.
4 H. Lin and K. S. Suslick, J. Am. Chem. Soc., 2010, 132,
15519–15521. See also: H. Lin, M. Jang and K. S. Suslick,
J. Am. Chem. Soc., 2011, 133, 16786–16789.
5 S. Malashikhin and N. S. Finney, J. Am. Chem. Soc., 2008, 130,
12846–12847.
16 For
a recent review, see: (a) S. Uchiyama, Y. Inaba and
6 (a) J. Chen and A. J. McNeil, J. Am. Chem. Soc., 2008, 130,
16496–16497; (b) K. N. King and A. J. McNeil, Chem. Commun.,
2010, 46, 3511–3513; (c) S. C. Bremmer, J. Chen, A. J. McNeil and
M. B. Soellner, Chem. Commun., 2012, 48, 5482–5484.
7 (a) F. M. Menger and K. L. Caran, J. Am. Chem. Soc., 2000, 122,
11679–11691; (b) F. M. Menger, Y. Yamasaki, K. K. Catlin and
T. Nishimi, Angew. Chem., Int. Ed. Engl., 1995, 34, 585–586;
(c) F. M. Menger and K. S. Venkatasubban, J. Org. Chem.,
1978, 43, 3413–3414.
N. Kunugita, J. Chromatogr., B, 2011, 879, 1282–1289; (b) See
also: C. F. H. Allen, J. Am. Chem. Soc., 1930, 52, 2955–2959;
(c) O. L. Brady, J. Chem. Soc., 1931, 756–759.
17 Under these conditions, disulfide 2 undergoes esterification over
the course of 3 d (see ESIw).
18 S. R. Raghavan and B. H. Cipriano, Gel Formation: Phase Diagrams
Using Tabletop Rheology and Calorimetry, In Molecular Gels:
Materials with Self-Assembled Fibrillar Networks, ed. R. G. Weiss
and P. Terech, Springer, The Netherlands, 2006, pp. 241–252.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun.