2976
J . Org. Chem. 1999, 64, 2976-2977
Communications
therefore many chemists8 have worked at developing new
methodology to achieve this goal. Several syntheses of
isodityrosine,9 piperazinomycin,10 K-13,11 OF-4949-III,12
bouvardin,13 deoxybouvardin,14 and RA-VII15 have used a
variety of approaches. Several different approaches have
been used to build the diaryl ether moiety,10 e.g., Ullmann-
type couplings,16 nucleophilic displacements of o-nitro-
substituted aryl fluorides17 or bromobenzoquinones,18 oxida-
tive phenol couplings,19 Diels-Alder reactions,20 displacement
of areneruthenium complexes,21 etc. We describe herein a
new method for the synthesis of isodityrosine which involves
a direct coupling of two readily prepared derivatives of the
natural amino acids L-phenylalanine and L-tyrosine. This
convergent synthesis should permit one to easily prepare
the asymmetric isodityrosine derivatives necessary for the
synthesis of the more complex natural products in this
series.
New Efficien t Meth od for th e Tota l Syn th esis
of (S,S)-Isod ityr osin e fr om Na tu r a l Am in o
Acid s
Michael E. J ung* and Tsvetelina I. Lazarova1
Department of Chemistry and Biochemistry, University of
California, Los Angeles, California 90095-1569
Received February 17, 1999
Isodityrosine2 (1), isolated in the early 1980s from ex-
tensin, a plant cell wall glycoprotein, is the key structural
unit which defines a large class of biologically active natural
products. Piperazinomycin3 (2a ) exhibits antimicrobial and
antifungal activity, the cyclic tripeptide K-134 (2b) is a potent
inhibitor of angiotensin I converting enzyme (ACE), and
OF4949-I-OF4949-IV5 (2c-f) are inhibitors of aminopepti-
dase B and exhibit antitumor and immunopotentiating
activity. The bicyclic hexapeptides bouvardin6 and deoxy-
bouvardin7,8 are members of a large class of potent antitumor
antibiotics, including RA-I-RA-IV.7
The first component of this convergent synthesis was
avaiable in five steps and reasonable overall yield from
tyrosine 3 via the selectively monoprotected L-DOPA deriva-
tive 5 prepared by formylation to give 4 followed by ben-
zylation and a Dakin oxidation to give 5.22 Formation of the
ester afforded 6 in good yield (Scheme 1).
The second component was prepared from the com-
mercially available 4-iodophenylalanine 7 (Scheme 2) (which
(9) (a) J ung, M. E.; J achiet, D.; Rohloff, J . C. Tetrahedron Lett. 1989,
30, 4211. (b) Boger, D. L.; Yohannes, D. Tetrahedron Lett. 1989, 30, 2053.
(c) Also K-13, OF4949-III, and OF4949-IV: Boger, D. L.; Yohannes, D. J .
Org. Chem. 1990, 55, 6000. (d) J ung, M. E.; Starkey, L. S. Tetrahedron 1997,
53, 8815; Tetrahedron Lett. 1995, 36, 7363.
(10) (a) Boger, D. L.; Zhou, J . J . Am. Chem. Soc. 1993, 115, 11426. (b)
Boger, D. L.; Zhou, J . J . Am. Chem. Soc. 1994, 116, 1601. (c) Nishiyama,
S.; Nakamura, K.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1986, 27,
4481. (d) Synthetic studies: J ung, M. E.; Rohloff, J . C. J . Org. Chem. 1985,
50, 4909.
(11) (a) Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahedron Lett. 1989,
30, 379. (b) OF4949-III: Evans, D. A.; Ellman, J . A. J . Am. Chem. Soc.
1989, 111, 1063. (c) Boger, D. L.; Yohannes, D. J . Org. Chem. 1989, 54,
2498. (d) Rama Rao, A. V.; Chakraborty, T. K.; Reddy K. L.; Rao, A. S.
Tetrahedron Lett. 1992, 33, 4799. (e) Beugelmans, R.; Bigot, A.; Zhu, J .
Tetrahedron Lett. 1994, 35, 5649. (f) Pearson, A. J .; Lee, K. J . Org. Chem.
1994, 59, 2304. (g) Boger, D. L.; Yohannes, D. J . Org. Chem. 1991, 56, 1763.
(12) OF4949-III: (a) Nishiyama, S.; Suzuki, Y.; Yamamura, S. Tetrahe-
dron Lett. 1988, 29, 559. (b) Schmidt, U.; Weller, D.; Holder, A.; Lie-
berknecht, A. Tetrahedron Lett. 1988, 29, 3227. (c) Evans, D. A.; Ellman,
J . A. J . Am. Chem. Soc. 1989, 111, 1063. (d) OF4949-IV: Boger, D. L.;
Yohannes, D. Tetrahedron Lett. 1989, 30, 5061.
The construction of the diaryl ether moiety is the foremost
synthetic challenge posed by these target molecules, and
(13) (a) Boger, D. L.; Patane, M. A.; Zhou, J . J . Am. Chem. Soc. 1994,
116, 8544. (b) Bates, R. B.; Cole, J . R.; Hoffmann, T. J .; Kriek, G. R.; Linz,
G. S.; Torrance, S. J . J . Am. Chem. Soc. 1983, 105, 1343.
(14) (a) Boger, D. L.; Yohannes, D. J . Org. Chem. 1988, 53, 487. (b) Inaba,
T.; Umezawa, I.; Yuasa, M.; Inoue, T.; Mihashi, S.; Iitokawa, H.; Ogura, K.
J . Org. Chem. 1987, 52, 2957.
(1) Recipient of the D. J . Cram Award for Excellence in Graduate
Research, UCLA, 1997-8.
(2) (a) Fry, S. C. Biochem. J . 1982, 204, 449. (b) Epstein, L.; Lamport,
D. T. A. Phytochemistry 1984, 23, 1241. (c) Cooper, J . B.; Varner, J . E.
Biochem. Biophys. Res. Commun. 1983, 112, 161.
(3) (a) Tamai, S.; Kaneda, M.; Nakamura, S. J . Antibiot. 1982, 35, 1130.
(b) Kaneda, M.; Tamai, S.; Nakamura, S.; Hirata, T.; Kushi, Y.; Suga, T. J .
Antibiot. 1982, 35, 1137.
(15) (a) Itokawa, H.; Inoue, T.; Umezawa, I.; Yuasa, M.; Inaba, T. J apan
Patent 63 05,0098; Chem. Abstr. 1989, 110, 213344s. Also deoxybouvar-
din: (b) Boger, D. L.; Yohannes, D. J . Am. Chem. Soc. 1991, 113, 1427. (c)
Boger, D. L.; Yohannes, D.; Zhou, J .; Patane, M. A. J . Am. Chem. Soc. 1993,
115, 3420.
(16) (a) See refs 13b, 13g, 14c, and 17c. (b) Bates, R. B.; J anda, K. D. J .
Org. Chem. 1982, 47, 4374. (c) Inoue, T.; Naitoh, K.; Kosemura, S.;
Umezawa, I.; Sonobe, T.; Serizawa, N.; Mori, N. Heterocycles 1983, 20, 397.
(17) (a) Boger, D. L.; Borzilleri, R. M. Bioorg. Med. Chem. Lett. 1995, 5,
1187. (b) Beugelmans, R.; Bigot, A.; Bois-Choussy, M.; Zhu, J . J . Org. Chem.
1996, 61, 771. (c) Rama Rao, A. V.; Reddy, K. L.; Rao, A. S. Tetrahedron
Lett. 1994, 35, 8465.
(4) (a) Kase, M.; Kaneko, M.; Yamada, K. J . Antibiot. 1987, 40, 450. (b)
Yasuzawa, T.; Shirahata, C.; Sano, H. J . Antibiot. 1987, 40, 455.
(5) (a) Sano, S.; Ikai, K.; Katayama, K.; Takesako, K.; Nakamura, T.;
Obayashi, A.; Ezure, Y.; Enomoto, H. J . Antibiot. 1986, 39, 1685. (b) Sano,
S.; Ikai, K.; Kuroda, H.; Nakamura, T.; Obayashi, A.; Ezure, Y.; Enomoto,
H. J . Antibiot. 1986, 39, 1674. (c) Sano, S.; Ikai, K.; Yoshikawa, Y.;
Nakamura, T.; Obayashi, A. J . Antibiot. 1987, 40, 512. (d) Sano, S.; Kuroda,
H.; Ueno, M.; Yoshikawa, Y.; Nakamura, T.; Obayashi, A. J . Antibiot. 1987,
40, 519.
(6) J olad, S. D.; Hoffmann, J . J .; Torrance, S. J .; Wiedhopf, R. M.; Cole,
J . R.; Arora, S. K.; Bates, R. B.; Gargiulo, R. L.; Kriek, G. R. J . Am. Chem.
Soc. 1977, 99, 8040.
(7) (a) Review: Itokawa, H.; Takeya, K. Heterocycles 1993, 35, 1467. (b)
Itokawa, H.; Takeya, K.; Mori, N.; Sonobe, T.; Mihashi, S.; Hamanaka, T.
Chem. Pharm. Bull. 1986, 34, 3762. (c) Itokawa, H.; Takeya, K.; Mihara,
K.; Mori, N.; Hamanaka, T.; Sonobe, T.; Iitaka, Y. Cham. Pharm. Bull. 1983,
31, 1424.
(18) Rama Rao, A. V.; Gurjar, M. K.; Reddy, A. B.; Khare, V. B.
Tetrahedron Lett. 1993, 34, 1657.
(19) (a) References 12c, 16b, 18c, and 18d. (b) Bates, R. B.; Gin, S. L.;
Hassen, M. A.; Hruby, V. J .; J anda, K. D.; Kriek, G. R.; Michaud, J .-P.;
Vine, D. B. Heterocycles 1984, 22, 785.
(20) Olsen, R. K.; Feng, X.; Campbell, M.; Shao, R.; Math, S. K. J . Org.
Chem. 1995, 60, 6025.
(21) Pearson, A. J .; Bignan, G.; Zhang, P.; Chelliah, M. J . Org. Chem.
1996, 61, 3940 and references therein.
(8) Review: Rama Rao, A. V.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S.
Chem. Rev. 1995, 95, 2135.
(22) J ung, M. E.; Lazarova, T. I. J . Org. Chem. 1997, 62, 1553.
10.1021/jo9902751 CCC: $18.00 © 1999 American Chemical Society
Published on Web 04/07/1999