Anilines as Iminium Catalysts for the Epoxidation of a-Substituted Acroleins
COMMUNICATIONS
[6] a) M. Lemay, W. W. Ogilvie, Org. Lett. 2005, 7, 4141–
4144; b) M. Lemay, W. W. Ogilvie, J. Org. Chem. 2006,
71, 4663–4666.
Experimental Section
General Procedure for the Epoxidation of Aldehydes
[7] a) K. Ishihara, K. Nakano, J. Am. Chem. Soc. 2005,
127, 10504–10505; b) A. Sakakura, K. Suzuki, K.
Nakano, K. Ishihara, Org. Lett. 2006, 8, 2229–2232;
c) A. Sakakura, Suzuki, K Ishihara, Adv. Synth. Catal.
2006, 348, 2457–2465; for primary amine iminium cat-
alysis with enones, see: d) N. J. A. Martin, B. List, J.
Am. Chem. Soc. 2006, 128, 13368–13369; e) J.-W. Xie,
W. Chen, R. Li, M. Zeng, W. Du, L. Yue, Y.-C. Chen,
Y. Wu, J. Zhu, J.-G. Deng, Angew. Chem. Int. Ed. 2007,
46, 389–392.
To a solution of aldehyde (0.5 mmol, 100 mol%) in CH2Cl2
(0.5 mL, 1.0M) in a 2-mL vial was added catalyst 1i·TFA
(0.1 mmol, 20 mol%) and TBHP solution (5M in isooctane,
0.75 mmol, 150 mol%) at room temperature. The mixture
was allowed to stir at room temperature for 1–48 h. Acrole-
in (50 mL) was then added and the mixture was allowed to
stir for an additional 10 min. The mixture was then poured
into a solution of NaBH4 in EtOH (2 mL) with a CH2Cl2
(1 mL) rinse. The mixture was allowed to stir for 5–10 min
at 08C. The mixture was then quenched with saturated
aqueous NaHCO3 (10 mL) and extracted with CH2Cl2 (3
10 mL). The combined organic extracts were washed with
saturated aqueous NaHCO3 and brine, dried (Na2SO4), and
concentrated under vacuum. The crude product thus ob-
tained was then purified with flash chromatography (20%
EtOAc in hexanes).
Alternatively, the aldehyde products were isolated directly
after the addition of acrolein as above by aqueous work-up
(10 mL) and extraction with CH2Cl2 (310 mL). The com-
bined organic extracts were washed with brine, dried
(Na2SO4), and concentrated under vacuum. The pure epoxy
aldehydes were obtained by preparative TLC or flash chro-
matography (10–20% EtOAc in hexanes).
[8] A. Puglisi, M. Benaglia, M. Cinquini, F. Cozzi, G. Cele-
ntano, Eur. J. Org. Chem. 2004, 567–573.
[9] a) E. H. Cordes, W. P. Jencks, J. Am. Chem. Soc. 1962,
84, 826–831; b) A. Dirksen, T. M. Hackeng, P. E.
Dawson, Angew. Chem. Int. Ed. 2006, 45, 7581–7584;
c) A. Dirksen, S. Dirksen, T. M. Hackeng, P. E.
Dawson, J. Am. Chem. Soc. 2006, 128, 15602–15603.
[10] a) T. Kano, Y. Tanaka, K. Maruoka, Org. Lett. 2006, 8,
2687–2689; b) T. Kano, Y. Tanaka, K. Maruoka, Tetra-
hedron Lett. 2006,47, 3039–3041.
[11] O. Doesbner, W. Miller, Ber. Chem. Dtsch. Ges. 1883,
1664–1667.
[12] Support for this model can be obtained by inspecting
the X-ray crystal structures for range of iminium ions
derived from anilines. A statistical study of these X-ray
structures is not possible due to low number of exam-
ples, but the available data suggests that the iminium
ions derived from parent aniline tend to favor confor-
mations where the iminium ion is conjugated with the
aromatic ring. ortho-Substituted anilines, on the other
hand, tend to favor non-coplanar conformations, with
the iminium ion twisted out of conjugation with the
ring. See the Supporting Information for examples.
[13] A. Erkkilä, P. M. Pihko, J. Org. Chem. 2006, 71, 2538–
2541.
Acknowledgements
Financial support from Academy of Finland (Project No.
203287), Tekes, and TKK is gratefully acknowledged. A. E.
thanks Glycoscience Graduate School and Association of
Finnish Chemical Societies for support. We thank Dr. Tiina
Putkonen and Mr. Esa Kumpulainen for the preparation of
11d and 14d, respectively.
[14] For epoxidation of aldehydes, see: a) M. Marigo, J.
FranzØn, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J.
Am. Chem. Soc. 2005, 127, 6964–6965; b) W. Zhuang,
M. Marigo, K. A. Jørgensen, Org. Biomol. Chem. 2005,
3, 3883–3885; c) H. SundØn, I. Ibrahem, A. Cꢁrdova,
Tetrahedron Lett. 2006, 47, 99–103; d) S. Lee, D . W. C.
MacMillan, Tetrahedron 2006, 62, 11413–11424; for ep-
oxidation of ketones, see: e) A. Lattanzi, Org. Lett.
2005, 7, 2579–2582; f) Y. Li, X. Liu, Y. Yang, G. Zhao,
J. Org. Chem. 2007, 72, 288–291.
[15] See the supporting information for details.
[16] The lack of stereocontrol in formation of 7b can be ex-
plained by the rapid isomerisation of the double bond.
This is well documented in iminium catalysis, see:
a) J. W. Yang, M. T. Hechavarria Fonseca, B. List,
Angew. Chem. Int. Ed. 2004, 43, 6660–6662; b) J. W.
Yang, M. T. Hechavarria Fonseca, N. Vignola, B. List,
Angew. Chem. Int. Ed. 2005, 44, 108–110; c) S. G.
Ouellet, J. B. Tuttle, D. W. C. MacMillan, J. Am. Chem.
Soc. 2005, 127, 32–33; See also ref.[14b] for similar re-
sults.
References
[1] G. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006,
39, 79–87.
[2] a) R. Naef, D. Seebach, Helv. Chim. Acta 1985, 68,
135–143; b) D. Seebach, D. D. Miller, S. Müller, T.
Weber, Helv. Chim. Acta 1985, 68, 949–952; c) D. See-
bach, E. Juaristi, D. D. Miller, C. Schickli, T. Weber.
Helv. Chim. Acta 1987, 70, 237–261; d) A. Studer, D.
Seebach , Encyclopedia of Reagents for Organic Syn-
thesis (Ed.: L. Paquette), Vol.1, John Wiley & Sons,
Chichester, 1995, pp. 306–308.
[3] K. A. Ahrendt, C. J. Borths, D. W. C. MacMillan, J.
Am. Chem. Soc. 2000, 122, 4243–4244.
[4] Y. K. Chen, M. Yoshida, D. W. C. MacMillan, J. Am.
Chem. Soc. 2006, 128, 9328–9329; see footnote 8 of
this paper.
[5] a) J. L. Cavill, J. U. Peters, N. C. O. Tomkinson, Chem.
Commun. 2003, 728–729; b) J. L. Cavill, R. L. Elliott,
G. Evans, I. L. Jones, J. A. Platts, A. M. Ruda, N. C. O.
Tomkinson, Tetrahedron 2006, 62, 410–421.
[17] Catalyst 1i·TFA promoted the Diels–Alder reaction be-
tween cyclopentadiene and a-benzylacrolein in 100%
conversion after >3 h. See the Supporting Information
Adv. Synth. Catal. 2007, 349, 802 – 806
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
805