1520
G. Ulrich et al.
LETTER
(12) Kang, H. C.; Haugland, R. P. US 5,433,896, 1995.
(13) Wada, M.; Ito, S.; Uno, H.; Murashime, T.; Ono, N.; Urano,
T.; Urano, Y. Tetrahedron Lett. 2001, 42, 6711.
(14) Katritzky, A. R.; Harris, P. A. J. Org. Chem. 1991, 56, 5049.
(15) Maekawa, E.; Suzuki, Y.; Sugiyama, S. Chem. Ber. 1968,
101, 847.
(16) General Procedure for Fluorine Replacement
A Schlenk flask was charged with the ethynyl derivative and
anhyd THF. A solution of EtMgBr (1 M in THF) was then
added dropwise and the mixture was stirred at 50 °C for 2 h.
The mixture was then added at 25 °C via a cannula to a
solution of 4a–c in anhyd THF. The mixture was stirred at
70 °C for 16 h and the solvent was removed by rotary
evaporation. The residue was treated with H2O and extracted
with CH2Cl2. The organic extracts were washed with H2O,
and dried over MgSO4. The solvent was removed, and the
residue was purified by chromatography.
Figure 4 Absorption (full line) and emission (dotted line) of 7a
(black), 6b (red) and 6c (blue).
Compound 5a
Prepared following general procedure from 4a (100 mg, 0.22
mmol), 1-ethynyltoluene (104 mg, 0.9 mmol), EtMgBr (0.41
mL, 0.41 mmol, 1 M in THF), THF (8 mL). Chromatography
(silica gel, CH2Cl2–cyclohexane, 30:70 to 50:50) gave 5a as
a blue crystalline powder (60 mg, 42%). 1H NMR (CDCl3,
300 MHz): d = 8.20 (d, 4 H, J = 6.6 Hz), 7.96 (d, 4 H, J = 6.0
Hz), 7.92 (s, 1 H), 7.61–7.39 (m, 11 H), 7.22–7.18 (m, 1 H),
6.88 (AB system, 8 H, JAB = 8.0 Hz, DdAB = 24.3 Hz),
2.27 (s, 6 H). 13C NMR (CDCl3, 75 MHz): d = 151.2, 136.8,
133.7, 132.4, 131.3, 130.9, 130.3, 128.3, 128.1, 127.7,
127.6, 124.6, 123.0, 122.4, 121.7, 118.4, 115.8, 98.6, 21.3.
11B NMR (CDCl3, 128 MHz): d = –7.14 (s). UV/Vis
(CH2Cl2): l (e, M–1 cm–1) = 632 (82500), 588 (27000, sh),
269 (12000) nm. MS (ES): m/z (nature of the peak, relative
intensity) = 637.1 (100) [M + H]+. Anal. Calcd for
C47H33BN2: C, 88.68; H, 5.23; N, 4.40. Found: C, 88.40; H,
4.95; N, 4.18.
energy of the emission. We contend that the present work
paves the way for the development of a new generation of
stable, functionalized luminophores. For bioanalytical
applications, a functional group suitable for their grafting
onto biomolecules is necessary. Chemistry at boron to
meet this requirement is currently under active develop-
ment.
Acknowledgment
The authors thank the CNRS and ULP for partial funding. GU
thanks the ANR ‘Borsupstokes’ project JC05-4228 for financial
support.
References and Notes
(17) Crystal Data for 4a at 293 K: C29H19BF2N2, M = 444.27,
triclinic, space group P–1, a = 7.310 (5) Å, b = 11.771 (5) Å,
c = 13.336 (5) Å, a = 86.84 (0)°, b = 79.14 (0)°, g = 89.79
(0)°, V = 1125.2 (10) Å3, Z = 2, l = 0.7107 Å, Dc = 1.311 g
cm–3, m = 0.057 mm–1, 24014 reflections collected with
q £ 26.0°, 4363 unique, R(int) = 0.0202, and 3343 observed
reflections [ I ≥ 2s(I)], 308 parameters, R1 = 0.0396,
wR2 = 0.1012 refined on F2. CCDC 637684.
(18) Crystal Data for 5a at 293 K: C47H33BN2, M = 636.56,
triclinic, space group P–1, a = 11.119 (4) Å, b = 11.674 (3)
Å, c = 15.572 (4) Å, a = 78.73 (2)°, b = 73.51 (2)°, g = 66.73
(2)°, V = 1772.5 (9) Å3, Z = 2, l = 0.7107 Å, Dc = 1.193 g
cm–3, m = 0.068 mm–1, 12226 reflections collected with q <
27.5°, 8071 unique, R(int) = 0.0241, and 5025 observed
reflections [ I ≥ 2s(I)], 453 parameters, R1 = 0.0571,
wR2 = 0.1438 refined on F2. CCDC 623954.
(1) Weissleder, R. Nature Biotech. 2001, 19, 316.
(2) (a) Farkas, E.; Hilbert, M.; Ketskemety, I.; Gati, L. Acta
Phys. Chem. 1985, 31, 711. (b) Tian, H.; Tang, Y.; Chen, K.
Dyes Pigm. 1994, 26, 159. (c) Ju, J.; Ruan, C.; Fuller, C. W.;
Glazer, A. N.; Mathies, R. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 4347. (d) Langhals, H.; Saulich, S. Chem. Eur. J.
2002, 8, 5630. (e) Wan, C.-W.; Burghart, A.; Chen, J.;
Bergström, F.; Johanson, L. B.-A.; Wolford, M. F.; Kim, T.
G.; Topp, M. R.; Hochstrasser, R. M.; Burgess, K. Chem.
Eur. J. 2003, 9, 4430.
(3) (a) Berti, L.; Xie, J.; Medintz, I. L.; Glazer, A. N.; Mathies,
R. A. Anal. Biochem. 2001, 292, 188. (b) Kim, T. G.;
Castro, J. C.; Loudet, A.; Jiao, J. G.-S.; Hochstrasser, R. M.;
Burgess, K.; Topp, M. R. J. Phys. Chem. A 2006, 110, 20.
(4) Glazer, A. N.; Mathies, R. A. Curr. Opin. Biotech. 1997, 8,
94.
(5) Forster, T. Discuss. Faraday Soc. 1959, 27, 7.
(6) The Handbook: A Guide to Fluorescent Probes and
Labeling Technologies, 10th ed.; Haughland, R. P., Ed.;
Invitrogen/Molecular Probes: Eugene, OR, 2005.
(7) (a) Kang, H. C.; Haughland, R. P. US 5,274,113, 1993.
(b) Rurack, K.; Kollmansberger, M.; Daub, J. New J. Chem.
2001, 25, 289. (c) Dost, Z.; Atilgan, S.; Akkaya, E. U.
Tetrahedron 2006, 62, 8484.
(19) Crystal Data for 6a at 293 K: [C49H33BN2, 0.5 × (C6H12,
C2H3N)], M = 723.19, triclinic, space group P–1, a = 11.294
(4) Å, b = 13.299 (3) Å, c = 14.735 (4) Å, a = 101.78 (2)°,
b = 110.03 (2)°, g = 102.17 (2)°, V = 1938.4 (10) Å3, Z = 2,
l = 0.7107 Å, Dc = 1.239 g cm–3, m = 0.071 mm–1, 10488
reflections collected with q < 22.4°, 4585 unique,
R(int) = 0.0351, and 3135 observed reflections [ I ≥ 2s(I)],
470 parameters, R1 = 0.0649, wR2 = 0.1879 refined on F2.
SQUEEZE macro within PLATON was used to take
disordered solvent molecules (half a molecule of
cyclohexane and half a molecule of MeCN in the
asymmetric unit) into account during the structure
refinement process. CCDC 623955.
(8) Chen, J.; Burghart, A.; Derecskei-Kavocs, A.; Burgess, K.
J. Org. Chem. 2000, 65, 2900.
(9) Zhao, W.; Carreira, E. M. Angew. Chem. Int. Ed. 2005, 117,
1705.
(10) Ulrich, G.; Goze, C.; Guardigli, M.; Roda, A.; Ziessel, R.
Angew. Chem. Int. Ed. 2005, 44, 3694.
(11) Goeb, S.; Ziessel, R. Org. Lett. 2007, 9, 737.
(20) Shen, Z.; Röhr, H.; Rurack, K.; Uno, H.; Spieles, M.; Schulz,
B.; Reck, G.; Ono, N. Chem. Eur. J. 2004, 10, 4853.
(21) Olmsted, J. III J. Phys. Chem. 1979, 83, 2581.
Synlett 2007, No. 10, 1517–1520 © Thieme Stuttgart · New York