Organic Letters
Letter
conditions were conducted (Scheme 6, eq 8). The reaction
rates of 7a and [D5]-7a provided a kinetic isotope effect (KIE)
of only kH/kD ≈ 1.3. These results indicated that the cleavage
of the C−H bond was not involved in the rate-determining
step. The difference between these two KIE values suggests
that the rate-determining step might happen before the
cleavage of the C−H bond, and the electrophilic metalation
is probably involved in the rate-determining step.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and spectroscopic character-
On the basis of the above experiments, this cascade one-pot
protocol might involve an acid-directed ortho-C−H arylation/
intramolecular decarboxylative annulation sequence (Scheme
7). First, a five-membered Pd(II) complex I may be generated
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Scheme 7. Possible Reaction Pathways
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
NSFC (no. 21871234) and Zhejiang Provincial NSFC for
Distinguished Young Scholars (no. LR15H300001) are
acknowledged.
REFERENCES
■
(1) For selected reviews, see: (a) Chen, X.; Engle, K. M.; Wang, D.
H.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 5094−5115. (b) Colby,
D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624−655.
(c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147−1169.
̈
(d) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev.
2011, 40, 4740−4761. (e) Ackermann, L. Acc. Chem. Res. 2014, 47,
281−295. (f) Wu, Y.; Wan, Y.; Zhang, F. Curr. Org. Synth. 2018, 15,
781−792.
(2) (a) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc.
2006, 128, 7134−7135. (b) Kalyani, D.; Deprez, N. R.; Desai, L. V.;
Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330−7331.
(3) (a) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50,
2450−2494. (b) Guo, J.; He, H.; Ye, Z. H.; Zhu, K.; Wu, Y. Q.;
Zhang, F. Z. Org. Lett. 2018, 20, 5692−5695. (c) Wu, Q. F.; Wang, X.
B.; Shen, P. X.; Yu, J. Q. ACS Catal. 2018, 8, 2577−2581.
(4) For reviews, see: (a) Zhang, F.; Spring, D. R. Chem. Soc. Rev.
2014, 43, 6906−6919. Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.;
Zhang, Y. Org. Chem. Front. 2015, 2, 1107−1295.
(5) (a) Zhang, F. L.; Hong, K.; Li, T. J.; Park, H.; Yu, J.-Q. Science
2016, 351, 252−256. (b) Gandeepan, P.; Ackermann, L. Chem. 2018,
4, 199−222. (c) Shi, H.; Herron, A. N.; Shao, Y.; Shao, Q.; Yu, J.-Q.
Nature 2018, 558, 581−585 and references therein. .
(6) During our preparation of this manuscript, Zeng and Li reported
an example involved in the two-in-one strategy: Zeng, H.; Wang, Z.;
Li, C.-J. Angew. Chem., Int. Ed. 2019, 58, 2859−2863.
from the benzoic acid 7a, which then attacks 11a to afford the
Pd(IV) intermediate II. Reductive elimination and then
decarboxylation would afford the iodide IV, which could give
the seven-membered Pd(IV) complex V by oxidative addition
to the C−I bond. Finally, a reductive elimination would release
the desired product 13aa to complete the catalytic cycle.
Alternatively, a Pd(II)−(III) catalytic cycle might be involved
with the bimetallic Pd(III) species VI.23
In summary, a one-pot protocol for the construction of
privileged triphenylene core was developed with commercially
available (hetero)aromatic carboxylic acids and readily
available cyclic diaryliodonium salts as the starting materials.
Various functionalized triphenylenes were efficiently prepared
which could be further transformed into an ETM, and different
FGs were tolerated under the Pd-catalyzed ligand-free
conditions. The key is the development of a two-in-one
strategy by which the acid functionalities were employed as
both the DGs for the Pd-catalyzed ortho-C−H arylation and
the reactive groups for the cascade intramolecular decarbox-
ylative annulation, which was supported by the mechanistic
studies. This simple and novel method would allow easy access
to fused polyaromatics of interest in optoelectronics research,24
and the further applications of this method for the preparation
of small graphene nanoribbons are ongoing in our lab.
(7) For reviews, see: (a) Baudoin, O. Angew. Chem., Int. Ed. 2007,
46, 1373−1375. (b) Bonesi, S. M.; Fagnoni, M.; Albini, A. Angew.
Chem., Int. Ed. 2008, 47, 10022−10025. (c) Goossen, L. J.; Rodriguez,
N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100−3120.
(d) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.;
Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510−3511.
(8) For reviews, see: (a) Rodríguez, N.; Goossen, L. J. Chem. Soc.
Rev. 2011, 40, 5030−5048. (b) Shang, R.; Liu, L. Sci. China: Chem.
2011, 54, 1670−1687. (c) Cornella, J.; Larrosa, I. Synthesis 2012, 44,
653−676. (d) Wei, Y.; Hu, P.; Zhang, M.; Su, W. Chem. Rev. 2017,
117, 8864−8907 and references therein. .
(9) (a) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.;
Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510−3511.
(b) Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007,
129, 9879−9884. (c) Cornella, J.; Righi, M.; Larrosa, I. Angew. Chem.,
Int. Ed. 2011, 50, 9429−9432. (d) Luo, J.; Preciado, S.; Larrosa, I. J.
Am. Chem. Soc. 2014, 136, 4109−4112. (e) Huang, L.; Hackenberger,
D
Org. Lett. XXXX, XXX, XXX−XXX