10.1002/anie.201903808
Angewandte Chemie International Edition
COMMUNICATION
a)
Acknowledgements
2 x
4–
O3PPO3
H2O
2–
Fe3P
PO3
O
P
–O
This work was supported by the Simons Collaboration on the
Origins of Life (327124 to RK) and by NASA Exobiology
(80NSSCC18K1288 to MAP).
2 x
NH3
3–
–
PO3
O–
PO
H2N
+
3
H2
OH–
H+
3
2–
2–
HPO3
HPO4
Keywords: Prebiotic Chemistry • Phosphorylation •
Diamidophosphate • Early Earth • Amidophosphate
b)
O
P
–O
O
P
O–
O
P
O–
O
P
O–
NH3 / H2O
H2
2 x
NH3
H2N
NH2
NH2
Fe3P
+
NH2
NH2
[1]
M. A. Pasek, T. P. Kee, in Origins of Life: The Primal Self-Organization
(Eds.: R. Egel, D.-H. Lankenau, Y. A. Mulkidjanian), Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 57-84.
2
DAP
H+
OH–
[2]
[3]
M. Karki, C. Gibard, S. Bhowmik, R. Krishnamurthy, Life 2017, 7, 32.
O. T. Quimby, T. J. Flautt, Zeit. Anorgan. allgemeine Chemie 1958, 296,
220-228.
O
P
–O
O
P
–O
O–
H2N
H2N
H
[4]
[5]
[6]
R. Krishnamurthy, S. Guntha, A. Eschenmoser, Angew. Chem. Int. Ed.
2000, 39, 2281-2285.
3
4
C. Gibard, S. Bhowmik, M. Karki, E.-K. Kim, R. Krishnamurthy, Nat.
Chem. 2018, 10, 212-217.
Scheme 3. The proposed mechanistic pathways for the production of
amidophosphorus species 2, 3 and 4 by corrosion of schreibersite by aqueous
ammonia This is based on previous studies[6] and thermodynamic
considerations discussed below (see also Fig. S16). Additionally, the failure of
the reaction under air may indicate interference in the radical chemistry by O2.
a) M. A. Pasek, Geosci. Front. 2017, 8, 329-335; b) N. L. La Cruz, D.
Qasim, H. Abbott-Lyon, C. Pirim, A. D. McKee, T. Orlando, M. Gull, D.
Lindsay, M. A. Pasek, Phys.Chem. Chemi. Phys. 2016, 18, 20160-
20167; c) D. E. Bryant, D. Greenfield, R. D. Walshaw, B. R. G.
Johnson, B. Herschy, C. Smith, M. A. Pasek, R. Telford, I. Scowen, T.
Munshi, H. G. M. Edwards, C. R. Cousins, I. A. Crawford, T. P Kee,
Geochem. Cosmochem. Acta 2013, 109, 90-112. d) D. E. Bryant, T. P.
Kee, Chem. Commun. 2006, 2344-2346; f) N. G. Holm, A. Neubeck,
Geochem. Trans. 2009, 10, 9-9; g) M. A. Pasek, D. S. Lauretta,
Astrobiology, 2005, 5, 515-535; h) M. Gull, M. A. Mojica, F. M.
Fernández, D. A. Gaul, T. M. Orlando, C. L. Liotta, M. A. Pasek, Sci.
Rep. 5, 17198, 2015.
we outline
a plausible mechanism for the formation of
amidophosphates (Scheme 3). Some of the predictions of what
species will be formed from this mechanism matches well with
the observations (Fig. S16). Using the data above, we evaluated
the three potential sources of amidophosphates for geochemical
relevance (see SI, page S18 for detailed assumptions and
calculations and Table S5): schreibersite, volcanic P4O10, and
[7]
a) Y. Yamagata, H. Watanabe, M. Saitoh, T. Namba, Nature 1991, 352,
516-519; b) M. A. Pasek, T. P. Kee, D. E. Bryant, A. A. Pavlov, J. I.
Lunine, Angew. Chem. Int. Ed. 2008, 47, 7918-7920; C) S. Johansson,
C. Kuhlmann, J. Weber, T. Paululat, C. Engelhard, J.S. auf der Günne,
Chem. Comm. 2018, 54, 7605-7608.
reduced oxidation state
P
compounds. It is especially
noteworthy that the P4O10 system affords both PN and PO
phosphorylating molecules, both classes being capable of
phosphorylating organics under different physicochemical
conditions; a scenario that contemporary cellular biology also
adopts. Of these, we find that all three could have been relevant
to early earth conditions, each generating 1015-1019 moles of
amidophosphates over the first billion years of earth’s history.
These data are the first for a planetary environment and
complement the observations of PN species in interstellar
medium (ISM) diffuse clouds and star-forming regions.[15]
[8]
[9]
Von S. Richter, W. Tøopelman, H.-A. Lehman, Z. Anorg. Allg. Chem.
1976, 424, 133-143.
a) J. P. Ferris, D. E. Nicodem, Origin Life Evol. Biochem. 1974, 107-
117; b) D. P. Summers, Orig. Life Evol. Biosph. 1999, 29, 33-46; c) D.
P. Summers, S. Chang, Nature 1993, 365, 630-633; d) J. A. Brandes, N.
Z. Boctor, G. D. Cody, B. A. Cooper, R. M. Hazen, H. S. Yoder, Nature
1998, 395, 365-367; e) S. Pizzarello, L. B. Williams, J. Lehman, G. P.
Holland, J. L. Yarger, Proc. Nat. Acad. Sci. U.S.A 2011, 108, 4303-
4306; f) N. G. Holm, A. Neubeck, Geochem. Trans. 2009, 10, 9-9; g) G.
Schlesinger, S. L. Miller, J. Mol. Evol. 1983, 19, 383-390. h) S. M. Som,
R. Buick, J.W. Hagadorn, T.S. Blake, J. M. Perreault, J. P. Harnmeijer,
J. P., D. C. Catling, Nature Geosci. 2016, 9, 448. i) E. E. Stüeken, M. A.
Kipp, M. C. Koehler, R. Buick, R. Earth-Sci. Rev. 2016, 160, 220-239. i)
K. J. Zahnle, J. Geophys. Res. Atm. 1986 91, 2819-2834.
In summary we have shown that there could be reasonable
pathways to various nitrogenated phosphorus (PN) compounds
(amidophosphates) that could have been generated and
coexisted with the oxygenated counterparts (phosphates) –
provided ammonia could have been available at critical
concentrations[9] – in an early earth scenario. This suggests that
amidophosphates may have been present in some abundance
as a prebiotic reagent on the early earth and could alleviate the
problems associated with phosphorylation in aqueous medium.
[10] B. Herschy, S. J. Chang, R. Blake, A. Lepland, H. Abbott-Lyon, J.
Sampson, Z. Atlas, T. P. Kee, M. A. Pasek, Nat. Commun. 2018, 9,
1346.
[11] A. W. Schwartz, Philos. Trans. R. Soc., B 2006, 361, 1743-1749.
[12] M. Pasek, Current Opinion in Chem. Biol. 2019, 49, 53-58.
[13] R. Krishnamurthy, G. Arrhenius, A. Eschenmoser, Orig. Life Evol.
Biosph. 1999, 29, 333-354.
Experimental Section
[14] O. Meyerhof, R. Shatas, A. Kaplan, Biochim. Biophys. Acta 1953, 12,
121-127.
See supporting information for description of experimental methods,
NMR data, calculations for thermodynamics of amidophosphate
formation and geochemical availability of sources for amidophosphates.
[15] a) E. Macia, Chem.Soc. Rev. 2005, 34, 691-701; b) B. Fegley, J. S.
Lewis, Icarus 1980, 41, 439-455; c) E. C. Sutton, G. Blake, C. R.
Masson, T. Phillips, The Astrophys. J. Supplement Series 1985, 58,
341-378; d) L. M Ziurys, Astrophys. J. 1987, 321, L81-85.
This article is protected by copyright. All rights reserved.