10.1002/anie.201909798
Angewandte Chemie International Edition
COMMUNICATION
Me [14]
To facilitate the release of CO2, we added NHCiPr
in
2
2
India and Research Group Linkage Programme (between TIFR
Hyderabad, India and Saarland University, Germany), AvH
Foundation, Germany. VC is thankful to the DST, New Delhi,
India, for a National J. C. Bose fellowship. SD thanks CSIR, New
Delhi, India and JNCASR for fellowship. SKP acknowledges
research support from DST, New Delhi, India. We are grateful to
the reviewers for their critical insights to improve the quality of
the manuscript.
the anticipation that it might induce the required 1,3-H shift (β-
hydride elimination)[28] by coordination to the carbonyl group and
removal of CO2 from equilibrium as NHCiPr 2-CO2 adduct 6.
Me
[29]
2
Me
Addition of one equivalent of NHCiPr
to a solution of 5 at
room temperature indeed resulted in the immediate formation of
3 (Scheme 5).
2
2
In order to verify the CO2 release at lower temperatures and
to check for intermediates, we carried out a VT-NMR study of a
1:1 toluene-d8 solution of NHCiPr
and 5. At −78 °C, the 31P
Me
2
2
Keywords: carbon dioxide • diphosphene • gold • ligand design
• phosphorus
NMR spectrum does not show any indication for the release of
CO2. At −10 °C, we observed one new set of peaks at = −35.2
and 0.9 ppm (1JPP = 465 Hz). These resonances disappear while
approaching room temperature with the concomitant
appearance of the resonances of 3. The occurrence of an
[1]
a) R. H. Crabtree, The Organometallic Chemistry of the Transition
Metals, Fourth Edition, John Wiley & Sons, Inc. 2005; b) J. F. Hartwig,
Organotransition Metal Chemistry From Bonding to Catalysis,
University Science Books, Sausalito, 2010; c) J.-P. Corbet, G. Mignani,
Chem. Rev. 2006, 106, 2651−2710; d) P. W. N. M. van Leeuwen, P. C.
J. Kamer, J. N. H. Reek, P. Dierkes, Chem. Rev. 2000, 100,
2741−2769.
intermediate suggests that the reaction may indeed proceed
Me
through the initial coordination of NHCiPr
to the carbonyl
2
2
carbon centre of 5 to give the thermally unstable adduct 7; in
analogy to the nucleophilic coordination of NHC to aldehydes.[30]
[2]
[3]
[4]
a) C. A. Tolman, Chem. Rev. 1977, 77, 313−348; b) H. Guo, Y. C. Fan,
Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 2018, 118, 10049−10293.
J. A. Osborn, F. H. Jardine, J. F. Young, G. Wilkinson, J. Chem. Soc. A
1966, 1711‒1732.
Subsequent hydride migration (β-hydride elimination) would lead
Me
to the NHCiPr
adduct of CO2 6 and Au(I) hydride 3 (Scheme
2
2
5). The calculated Gibbs free energy values confirm that the
Me
[11]
reaction 5 + NHCiPr 2 → 3 + 6 is endergonic by 7.4 kcal/mol.
2
R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H.
Kumobayashi, S. Akutagawa, J. Am. Chem. Soc. 1987, 109,
5856‒5858.
Finally, we contemplated the use of the NHC/diphosphene
coordinated Au(I) hydride 3 for the dehydrogenation of HCO2H.
The stoichiometric reaction of 3 and HCO2H indeed results in the
with elimination of H2 (Scheme 6).
Computationally, the formation of 5 from 3 and HCO2H is
[5]
[6]
S. T. Nguyen, L. K. Johnson, R. H. Grubbs, J. W. Ziller, J. Am. Chem.
Soc. 1992, 114, 3974‒3975.
Au(I) formate
5
a) M. Yoshifuji, Eur. J. Inorg. Chem. 2016, 607−615; b) A. H. Cowley, J.
E. Kilduff, J. G. Lasch, N. C. Norman, M. Pakulski, F. Ando, T. C.
Wright, J. Am. Chem. Soc,. 1983, 105, 7751–7752; c) A. H. Cowley, J.
E. Kilduff, J. G. Lasch, N. C. Norman, M. Pakulski, F. Ando, T. C.
Wright, Organometallics, 1984, 3, 1044–1050; d) K. M. Flynn, M. M.
Olmstead, P. P. Power, J. Am. Chem. Soc. 1983, 105, 2085–2086.
a) M. Peters, A. Doddi, T. Bannenberg, M. Freytag, P. G. Jones, M.
Tamm, Inorg. Chem. 2017, 56, 10785−10793; b) T. G. Larocque, G. G.
Lavoie, New J. Chem. 2014, 38, 499−502; c) V. A. K. Adiraju, M.
Yousufuddin, H. V. R. Dias, Dalton Trans. 2015, 44, 4449−4454; d) A.
Doddi, D. Bockfeld, A. Nasr, T. Bannenberg, P. G. Jones, M. Tamm,
Chem.-Eur. J. 2015, 21, 16178−16189; e) Bockfeld, D. Doddi, A. Jones,
P. G. Tamm, M. Eur. J. Inorg. Chem. 2016, 2016, 3704−3713.
a) L. Liu, D. A. Ruiz, D. Munz, G. Bertrand, Chem 2016, 1, 147–153; b)
M. M. Hansmann, R. Jazzar, G. Bertrand, J. Am. Chem. Soc. 2016, 138,
8356−8359.
thermodynamically favourable by 13.5 kcal/mol.[11]
[7]
[8]
[9]
Scheme 6. Au(I)-hydride, 3 mediated release of H2 and CO2 from HCO2H
(Inset: Reaction of HCO2H to CO2 and H2).
Recent reviews: a) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner,
A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678−9842; b) J. Cheng, L.
Wang, P. Wang, L. Deng, Chem. Rev. 2018, 118, 9930−9987; c) M.
Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew. Chem. 2017,
129, 10180–10203; Angew. Chem. Int. Ed. 2017, 56, 10046–10068.
In conclusion, we herewith disclosed
a water-stable
monomeric terminal Au(I)-hydride coordinated by an
NHC/diphosphene adduct. Like other heavier Group 14 multiple
bonds, the diphosphene can simultaneously act as a Lewis acid
and as a Lewis base. The Au(I) hydride exhibits pronounced
hydridic character and thus reacts with CO2 to the corresponding
Au(I)-formate, which spontaneously releases CO2 at room
temperature, a feature that typically requires much higher
temperatures.[31] The alternative formation of formate from Au(I)-
hydride and HCO2H with release of H2 suggests that a thermally
more stable Au(I)-hydride might indeed be a competent catalyst
for the release of H2 from HCO2H, a chemical hydrogen storage
material at ambient conditions.[32]
[10] D. Dhara, P. Kalita, S. Mondal, R. S. Narayanan, K. R. Mote, V. Huch,
M. Zimmer, C. B. Yildiz, D. Scheschkewitz, V. Chandrasekhar, A. Jana,
Chem. Sci. 2018, 9, 4235–4243.
[11] See Supporting Information for the calculation of TEP for 1·NHCMe
experimental details, and computational details.
,
4
[12] X. Wang, L. Andrews, J. Am. Chem. Soc. 2001, 123, 12899–12900.
[13] A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2006, 118, 8064–
8105; Angew. Chem. Int. Ed. 2006, 45, 7896–7936.
[14] a) E. Y. Tsui, M. Peter, J. P. Sadighi, Angew. Chem. 2008, 120, 9069–
9072; Angew. Chem. Int. Ed. 2008, 47, 8937–8940; b) S. Gaillard, A.
M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46, 2742–2744; c) H.
Lv, J. H. Zhan, Y. B. Cai, Y. Yu, B. Wang, J. L. Zhang, J. Am. Chem.
Soc. 2012, 134, 16216−16227; d) N. Phillips, T. Dodson, R. Tirfoin, J. I.
Bates, S. Aldridge, Chem. Eur. J. 2014, 20, 16721–16731; e) D.
Gasperini, A. Collado, A. G. Suarez, D. B. Cordes, A. M. Z. Slawin, S. P.
Nolan, Chem. Eur. J. 2015, 21, 5403–5412; f) A. J. Jordan, G. Lalic, J.
P. Sadighi, Chem. Rev. 2016, 116, 8318–8372.
Acknowledgements
This work is supported by the Tata Institute of Fundamental Re-
search Hyderabad, Gopanpally, Hyderabad-500107, Telangana,
4
This article is protected by copyright. All rights reserved.