Organic Letters
Letter
802. (c) Ackermann, L. Modern Arylation Methods; Wiley-VCH,
Weinheim, 2009. (d) Bergman, R. G. Science 1984, 223, 902−908.
(2) (a) Sivaguru, P.; Wang, Z.; Zanoni, G.; Bi, X. Chem. Soc. Rev. 2019,
48, 2615−2656. (b) Guengerich, F. P.; Yoshimoto, F. K. Chem. Rev.
2018, 118, 6573−6655. (c) Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J.
Chem. Soc. Rev. 2018, 47, 7078−7115. (d) Newton, C. G.; Wang, S.-G.;
Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908−8976.
(e) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404−
9432. (f) To, C. T.; Chan, K. S. Acc. Chem. Res. 2017, 50, 1702−1711.
(g) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410−9464.
(h) Marek, I.; Masarwa, A.; Delaye, P.-O.; Leibeling, M. Angew. Chem.,
Int. Ed. 2015, 54, 414−429. (i) Cleavage of Carbon-Carbon Single Bonds
by Transition Metals; Murakami, M., Chatani, N., Eds.; Wiley-VCH:
Weinheim, Germany, 2016.
Scheme 5. Substrate Scope of Formal Radical Alkynylation
Reaction
a b
,
(3) (a) Chen, J.; Huang, W.; Li, Y.; Cheng, X. Adv. Synth. Catal. 2018,
360, 1466−1472. (b) Zhu, C.; Saito, K.; Yamanaka, M.; Akiyama, T.
Acc. Chem. Res. 2015, 48, 388−398. (c) Tarantino, K. T.; Liu, P.;
Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022−10025.
(d) Henseler, A.; Kato, M.; Mori, K.; Akiyama, T. Angew. Chem., Int.
Ed. 2011, 50, 8180−8183.
(4) Li, G.; Chen, R.; Wu, L.; Fu, Q.; Zhang, X.; Tang, Z. Angew. Chem.,
Int. Ed. 2013, 52, 8432−8436.
(5) (a) Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54,
1881−1884. (b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J.
Am. Chem. Soc. 2014, 136, 2280−2283. (c) Moteki, S. A.; Usui, A.;
Selvakumar, S.; Zhang, T.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53,
11060−11064. (d) Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem.,
Int. Ed. 2015, 54, 11200−11204. (e) Li, G.-X.; Morales-Rivera, C. A.;
Gao, F.; Wang, Y.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2017, 8, 7180−
7185.
(6) (a) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev.
1999, 99, 1991−2070. (b) Yoshikai, K.; Hayama, T.; Nishimura, K.;
Yamada, K.-i.; Tomioka, K. J. Org. Chem. 2005, 70, 681−683.
(c) Benati, L.; Calestani, G.; Leardini, R.; Minozzi, M.; Nanni, D.;
Spagnolo, P.; Strazzari, S. Org. Lett. 2003, 5, 1313−1316.
(d) Chudasama, V.; Fitzmaurice, R. J.; Caddick, S. Nat. Chem. 2010,
2, 592−596. (e) Norman, A. R.; Yousif, M. N.; McErlean, C. S. P. Org.
Chem. Front. 2018, 5, 3267−3298. (f) Bergonzini, G.; Cassani, C.;
Wallentin, C.-J. Angew. Chem., Int. Ed. 2015, 54, 14066−14069.
(g) Chu, L.; Lipshultz, J. M.; Macmillan, D. W. C. Angew. Chem., Int. Ed.
2015, 54, 7929−7933. (h) Zhang, X.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2017, 139, 11353−11356. (i) Raviola, C.; Protti, S.; Ravelli, D.;
Fagnoni, M. Green Chem. 2019, 21, 748. (j) Banerjee, A.; Lei, Z.; Ngai,
M.-Y. Synthesis 2019, 51, 303−333. (k) Matsubara, H.; Kawamoto, T.;
Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2018, 51, 2023−2035. (l) Liu, D.;
Liu, C.; Lei, A. Chem. - Asian J. 2015, 10, 2040−2054. (m) Ryu, I. Chem.
Soc. Rev. 2001, 30, 16−25.
a
Reaction conditions: 1 (0.1 mmol), 5 (0.2 mmol), DCM (2 mL).
b
Isolated yield.
reactivity. Delightfully, an alkyl substitution (5n) or a silyl
substitution (5o) on the acetylene unit can also be tolerated.
In conclusion, we have developed herein an acyl radical
generation strategy from benzothiazolines under visible light
irradiation. This not only provides a mechanistically distinct C−
C bond breaking mode but also enables the efficient achieve-
ment of radical alkylation, alkenylation, and alkynylation
reactions. These findings promise the discovery of more
aromatization-derived synthetic systems.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and product characterization;
1
copies of the H and 13C NMR spectra of selected
(7) (a) Cartier, A.; Levernier, E.; Corc, V.; Fukuyama, T.; Dhimane,
A.-L.; Ollivier, C.; Ryu, I.; Fensterbank, L. Angew. Chem., Int. Ed. 2019,
58, 1789−1793. (b) Micic, N.; Polyzos, A. Org. Lett. 2018, 20, 4663−
4666. (c) Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao,
W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265−2269. (d) Zhou, Q.-Q.;
Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, Li.-Q.; Xiao, W.-J. Angew.
Chem., Int. Ed. 2015, 54, 11196−11199. (e) Liu, W.; Li, Y.; Liu, K.; Li,
Z. J. Am. Chem. Soc. 2011, 133, 10756−10759. (f) Benati, L.; Calestani,
G.; Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S. Org.
Lett. 2003, 5, 1313−1316.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(8) (a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.;
MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 0052. (b) Skubi, K. L.;
Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035−10074.
(c) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016,
81, 6898−2926. (d) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016,
116, 10075−10166. (e) Karkas, M. D.; Porco, J. A.; Stephenson, C. R. J.
Chem. Rev. 2016, 116, 9683−9747. (f) Douglas, J. J.; Sevrin, M. J.;
Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1134−1147.
(g) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013,
113, 5322−5363.
ACKNOWLEDGMENTS
■
J.Z. gratefully acknowledges support from the National Natural
Science Foundation of China (21425415, 21774056), the
National Basic Research Program of China (2015CB856303),
and Science and Technology Department of Jiangsu Province
(BRA2017360, BK20181255).
REFERENCES
■
(1) (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281−295. (b) Engle,
K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788−
(9) (a) Zhou, Q.-Q.; Zou, Y.-Q.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem.,
Int. Ed. 2019, 58, 1586−1604. (b) Ravelli, D.; Protti, S.; Fagnoni, M.
D
Org. Lett. XXXX, XXX, XXX−XXX