H. Tamiaki et al.
Bull. Chem. Soc. Jpn., 74, No. 4 (2001) 737
1736 (ester CꢁO), 1692 (urethane amide CꢁO), 1653 (amide
CꢁO), 1591 (CꢁC), 820 cmꢀ1 (C2,6–H); 1H NMR (CDCl3) δ 0.88
(9H, t, J ꢁ 6 Hz, 3,4,5-O–C17–CH3), 1.25 (87H, m, 3,4,5-O–C3–
(CH2)14, Ala–α-CH3), 1.46 (6H, m, 3,4,5-O–C2-CH2), 1.79 (6H,
m, 3,4,5-O–C–CH2), 3.07 (2H, m, Phe–α-CH2), 3.93 (2H, t, J ꢁ 6
Hz, 4-OCH2), 3.95 (4H, t, J ꢁ 6 Hz, 3,5-OCH2), 4.19 (1H, t, J ꢁ 7
Hz, Fmoc–9-H), 4.33 (1H, m, Ala–α-H), 4.43 (2H, m, Fmoc–9-
CH2), 4.54 (1H, m, Phe–α-H), 5.04 (2H, s, 1-CH2), 5.30 (1H, br-d,
Phe–NH), 6.30 (1H, br-d, Ala–NH), 6.50 (2H, s, 2,6-H), 7.18–
7.25 (5H, m, Phe–β-C6H5), 7.30, 7.40 (each 2H, t, J ꢁ 7 Hz,
Fmoc–2,3,6,7-H), 7.54, 7.76 (each 2H, d, J ꢁ 7 Hz, Fmoc–
1,4,5,8-H). TOFMS found: m/z 1377. Calcd for C88H140N2NaO8:
MNaꢃ, 1377.
1,4,5,8-H). TOFMS found: m/z 1490. Calcd for C94H151N3NaO9:
MNaꢃ, 1490.
3,4,5-Tris(octadecyloxy)benzyl Chloride (Cl–Bzl(OC18)3, 3).
Following the reported procedure,8 reaction of 2 with SOCl2 in the
presence of a catalytic amount of DMF in dry CH2Cl2 and recrys-
tallization from methanol afforded pure 3 (92%); white powder;
1
mp 65–66 ˚C; IR (KBr) 1593 (CꢁC), 833 cmꢀ1 (C2,6–H); H
NMR (CDCl3) δ 0.88 (9H, t, J = 7 Hz, 3,4,5-O–C17–CH3), 1.25
(84H, m, 3,4,5-O–C3–(CH2)14), 1.46 (6H, m, 3,4,5-O–C2–CH2),
1.79 (6H, m, 3,4,5-O–C–CH2), 3.93 (2H, t, J ꢁ 6.5 Hz, 4-OCH2),
3.96 (4H, t, J ꢁ 6.5 Hz, 3,5-OCH2), 4.51 (2H, s, 1-CH2), 6.56 (2H,
s, 2,6-H). TOFMS found: m/z 932. Calcd for C61H11635ClO3: MHꢃ,
932. Found: C; 78.69, H; 12.51%. Calcd for C61H115ClO3: C;
78.61, H; 12.44%.
N-(9-Fluorenylmethyloxycarbonyl)alanylalanine 3,4,5-Tris
(octadecyloxy)benzyl Ester (Fmoc–Ala1–Ala2–OBzl(OC18)3).
Coupling of Fmoc–Ala–OH with H–Ala–OBzl(OC18)3 by EDC–
HOBt gave crude Fmoc–Ala–Ala–OBzl(OC18)3. Further purifica-
tion by FCC with 5% Et2O–CH2Cl2 and recrystallization from
methanol afforded the pure protected dipeptide (70%); white pow-
der; mp 88–92 ˚C; IR (KBr) 3294 (N–H), 1732 (ester CꢁO), 1693
(urethane amide CꢁO), 1651 (amide CꢁO), 1589 (CꢁC), 820
′ ′ ′
3,4,5-Tris[3 ,4 ,5 -tris(octadecyloxy)benzyloxy]benzyl Alco-
hol (HO–Bzl[OBzl(OC18)3]3, 4). Similarly to the synthesis of 1,
a reaction of methyl gallate and 3 at 74 ˚C for 4 h afforded crude
methyl 3,4,5-tris[3′,4′,5′-tris(octadecyloxy)benzyloxy]benzoate.
Further purification by FCC with 30% hexane–CH2Cl2 gave the
pure ester (95%); white powder; 1H NMR (CDCl3) δ 0.88 (27H, t,
J ꢁ 6 Hz, 3′,4′,5′-O–C17–CH3), 1.25 (252H, m, 3′,4′,5′-O–C3–
(CH2)14), 1.44 (18H, m, 3′,4′,5′-O–C2–CH2), 1.72 (18H, m,
3′,4′,5′-O–C–CH2), 3.75 (4H, t, J ꢁ 6.5 Hz, 3′,5′-OCH2 on the 4-
position), 3.87 (8H, t, J ꢁ 5 Hz, 3′,5′-OCH2 on the 3,5-positions),
3.87 (3H, s, 1-COOCH3), 3.97 (6H, m, 4′-OCH2), 5.02 (6H, s,
3,4,5-OCH2), 6.59 (2H, s, 2′,6′-H on the 4-position), 6.62 (4H, s,
2′,6′-H on the 3,5-position), 7.37 (2H, s, 2,6-H).
Similarly to the synthesis of 2, the reduction of the above crude
ester with LiAlH4 afforded 4 (90% for the two steps); white pow-
der; mp 75–77 ˚C; IR (KBr) 1589 (CꢁC), 814 cmꢀ1 (C2,6,2′,6′-H);
1H NMR (CDCl3) δ 0.88 (27H, t, J ꢁ 6 Hz, 3′,4′,5′-O–C17–CH3),
1.25 (252H, m, 3′,4′,5′-O–C3–(CH2)14), 1.44 (18H, m, 3′,4′,5′-O–
C2–CH2), 1.72 (18H, m, 3′,4′,5′-O–C–CH2), 3.75 (4H, t, J ꢁ 6.5
Hz, 3′,5′-OCH2 on the 4-position), 3.87 (8H, t, J ꢁ 5 Hz, 3′,5′-
OCH2 on the 3,5-positions), 3.97 (6H, m, 4′-OCH2), 4.58 (2H, s,
1-CH2), 5.02 (6H, s, 3,4,5-OCH2), 6.56 (2H, s, 2,6-H), 6.59 (2H, s,
2′,6′-H on the 4-position), 6.62 (4H, s, 2′,6′-H on the 3,5-posi-
tion). Found: C; 79.43, H; 12.77%. Calcd for C190H350O13•H2O: C;
79.77, H; 12.40%.
1
cmꢀ1 (C2,6–H); H NMR (CDCl3) δ 0.87 (9H, t, J ꢁ 6 Hz, 3,4,5-
O–C17-CH3), 1.25 (90H, m, 3,4,5-O–C3–(CH2)14, Ala1,2–α-CH3),
1.45 (6H, m, 3,4,5-O–C2-CH2), 1.77 (6H, m, 3,4,5-O–C–CH2),
3.93 (2H, t, J ꢁ 6 Hz, 4-OCH2), 3.95 (4H, t, J ꢁ 6 Hz, 3,5-OCH2),
4.22 (1H, t, J ꢁ 7 Hz, Fmoc–9-H), 4.24 (1H, m, Ala2–α-H), 4.40
(2H, d, J ꢁ 7 Hz, Fmoc–9-CH2), 4.60 (1H, m, Ala1α-H), 5.06
(2H, s, 1-CH2), 5.37 (1H, br, Ala1–NH), 6.47 (1H, br, Ala2–NH),
6.51 (2H, s, 2,6-H), 7.31, 7.40 (each 2H, t, J ꢁ 7 Hz, Fmoc–
2,3,6,7-H), 7.58, 7.76 (each 2H, d, J ꢁ 7 Hz, Fmoc–1,4,5,8-H).
Phenylalanylalanine 3,4,5-Tris(octadecyloxy)benzyl Ester
(H–Phe–Ala–OBzl(OC18)3). Deprotection of Fmoc group in
Fmoc–Phe–Ala–OBzl(OC18)3 by piperidine gave H–Phe–Ala–
OBzl(OC18)3 (92%); white powder; 1H NMR (CDCl3) δ 0.88 (9H,
t, J ꢁ 6 Hz, 3,4,5-O–C17–CH3), 1.25 (87H, m, 3,4,5-O–C3–
(CH2)14, Ala–α-CH3), 1.46 (6H, m, 3,4,5-O–C2–CH2), 1.78 (6H,
m, 3,4,5-O–C–CH2), 2.71 (1H, dd, J ꢁ 9, 14 Hz, Phe–α-CH), 3.25
(1H, dd, J ꢁ 4, 14 Hz, Phe–α-CH), 3.63 (1H, dd, J ꢁ 4, 9 Hz,
Phe–α-H), 3.93 (2H, t, J ꢁ 6 Hz, 4-OCH2), 3.96 (4H, t, J ꢁ 6 Hz,
3,5-OCH2), 4.62 (1H, quintet, J ꢁ 7.5 Hz, Ala–α-H), 5.06 (2H, s,
1-CH2), 6.52 (2H, s, 2,6-H), 7.20–7.34 (5H, m, Phe–β-C6H5), 7.79
(1H, d, J ꢁ 7.5 Hz, Ala–NH).
′ ′
N-(9-Fluorenylmethyloxycarbonyl)alanine 3,4,5-Tris[3 ,4 ,
′
5 -tris(octadecyloxy)benzyloxy]benzyl Ester (Fmoc–Ala–O–
Bzl[OBzl(OC18)3]3). Coupling of Fmoc–Ala–OH with 4 by
EDC–HOBt gave crude Fmoc–Ala–OBzl[OBzl(OC18)3]3. Further
purification by FCC with CH2Cl2 and recrystallization from meth-
anol afforded the pure protected alanine (30%); white powder; 1H
NMR (CDCl3) δ 0.88 (27H, t, J = 6 Hz, 3′,4′,5′-O–C17–CH3), 1.25
(255H, m, 3′,4′,5′-O–C3–(CH2)14, Ala–α-CH3), 1.44 (18H, m,
3′,4′,5′-O–C2–CH2), 1.72 (18H, m, 3′,4′,5′-O–C–CH2), 3.75 (4H,
t, J ꢁ 6.5 Hz, 3′,5′-OCH2 on the 4-position), 3.87 (8H, t, J ꢁ 5
Hz, 3′,5′-OCH2 on the 3,5-positions), 3.97 (6H, m, 4′-OCH2), 4.23
(1H, t, J ꢁ 7 Hz, Fmoc–9-H), 4.38 (2H, d, J ꢁ 6 Hz, Fmoc–9-
CH2), 4.46 (1H, m, Ala–α-H), 5.02 (6H, s, 3,4,5-OCH2), 5.08 (2H,
s, 1-CH2), 5.38 (1H, d, J ꢁ 8 Hz, Ala–NH), 6.52 (2H, s, 2,6-H),
6.59 (2H, s, 2′,6′-H on the 4-position), 6.62 (4H, s, 2′,6′-H on the
3,5-position), 7.31, 7.40 (each 2H, t, J ꢁ 7 Hz, Fmoc–2,3,6,7-H),
7.59, 7.76 (each 2H, d, J ꢁ 7 Hz, Fmoc–1,4,5,8-H).
N-(9-Fluorenylmethyloxycarbonyl)leucylphenylalanylala-
nine 3,4,5-Tris(octadecyloxy)benzyl Ester (Fmoc–Leu–Phe–
Ala–OBzl(OC18)3). Coupling of Fmoc–Leu–OH with H–Phe–
Ala–OBzl(OC18)3 by EDC–HOBt gave crude Fmoc–Leu–Phe–
Ala–OBzl(OC18)3. Further purification by FCC with 15% Et2O–
CH2Cl2 and recrystallization from methanol afforded the pure pro-
tected tripeptide (52%); white powder; mp 147–149 ˚C; IR (KBr)
3279 (N–H), 1740 (ester CꢁO), 1693 (urethane amide CꢁO),
1
1647 (amide CꢁO), 1591 (CꢁC), 818 cmꢀ1 (C2,6–H); H NMR
(CDCl3) δ 0.88 (15H, t, J ꢁ 6 Hz, 3,4,5-O–C17–CH3, Leu–γ-CH3),
1.25 (87H, m, 3,4,5-O–C3–(CH2)14, Ala–α-CH3), 1.46 (6H, m,
3,4,5-O–C2–CH2), 1.57 (3H, m, Leu–α-CH2, γ-H), 1.79 (6H, m,
3,4,5-O–C–CH2), 3.07 (2H, d, J ꢁ 6 Hz, Phe–α-CH2), 3.93 (2H, t,
J ꢁ 6 Hz, 4-OCH2), 3.95 (4H, t, J ꢁ 6 Hz, 3,5-OCH2), 4.12 (1H,
m, Leu–α-H), 4.19 (1H, t, J ꢁ 7 Hz, Fmoc–9-H), 4.34 (1H, m,
Ala–α-H), 4.42–4.53 (2H, m, Fmoc–9-CH2), 4.64 (1H, q, J ꢁ 7
Hz, Phe–α-H), 5.03 (2H, s, 1-CH2), 5.05 (1H, br, Leu–NH), 6.46,
6.55 (each 1H, d, J ꢁ 6 Hz, Ala, Phe–NH), 6.51 (2H, s, 2,6-H),
7.16–7.23 (5H, m, Phe–β-C6H5), 7.31, 7.41 (each 2H, t, J ꢁ 7 Hz,
Fmoc–2,3,6,7-H), 7.57, 7.77 (each 2H, d, J ꢁ 7 Hz, Fmoc–
3,4,5-Tris(octadecyloxy)benzoic Acid. To an H2O–EtOH
(1:3) solution (133 mL) of methyl ester 1 (12.52 g) was added
KOH (7.53 g). The mixture was refluxed for 4 h, and then left
standing at room temperature overnight. The precipitated solid
was separated by decantation, and was stirred vigorously for sev-
eral days in 0.6 M HCl (250 mL) and CH2Cl2 (150 mL). After