Organic Letters
Letter
Fukushima, H.; Ohshita, J.; Kunai, A. Org. Lett. 2007, 9, 3367−3370.
(h) Bronner, S. M.; Bahnck, K. B.; Garg, N. K. Org. Lett. 2009, 11,
1007−1010. (i) Okuma, K.; Matsunaga, N.; Nagahora, N.; Shioji, K.;
Yokomori, Y. Chem. Commun. 2011, 47, 5822−5824. (j) Hendrick, C.
E.; McDonald, S. L.; Wang, Q. Org. Lett. 2013, 15, 3444−3447.
(6) For examples of diamination via aryne chemistry, see: (a) Beller,
M.; Breindl, C.; Riermeier, T. H.; Tillack, A. J. Org. Chem. 2001, 66,
whereas 5 could not be converted to 6 in the presence of CsF
and 2s. These results indicate that the formation of 6 must
proceed through the second aryne intermediate iv. Moreover,
the high consumption of 2s (98%) and furan (74%), based on
the amounts of the products, suggests that the sequential aryne
process is indeed a major path in this transformation.
In summary, as an alternative, mild, and efficient transition-
metal-free strategy, diamination reactions of a domino aryne
precursor with sulfonamides were reported. This TPBT reagent
is unique and unprecedented in the preparation of both 1,3-
diaminobenzene and trisubstituted 1,3-diaminobenzene by
simply varying the reaction conditions. Mechanistic study
reveals that the reaction proceeds through a sequential aryne
pathway. Our ongoing work includes the development of new
domino aryne transformations.
́
1403−1412. (b) García-Lopez, J.-A.; Cetin, M.; Greaney, M. F. Angew.
Chem., Int. Ed. 2015, 54, 2156−2159.
(7) (a) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am. Chem. Soc.
2015, 137, 5670−5673. (b) Li, Y.; Qiu, D.; Shi, J. Synlett 2015, 26,
2194−2198.
(8) (a) Cheong, P. H. Y.; Paton, R. S.; Bronner, S. M.; Im, G. Y. J.;
Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 1267−1269.
(b) Im, G. Y. J.; Bronner, S. M.; Goetz, A. E.; Paton, R. S.; Cheong, P.
H. Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010, 132, 17933−
17944. (c) Goetz, A. E.; Bronner, S. M.; Cisneros, J. D.; Melamed, J.
M.; Paton, R. S.; Houk, K. N.; Garg, N. K. Angew. Chem., Int. Ed. 2012,
51, 2758−2762. (d) Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 5, 54−
60. (e) Medina, J. M.; Mackey, J. L.; Garg, N. K.; Houk, K. N. J. Am.
Chem. Soc. 2014, 136, 15798−15805. (f) Picazo, E.; Houk, K. N.;
Garg, N. K. Tetrahedron Lett. 2015, 56, 3511−3514.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(9) (a) Charmant, J. P. H.; Dyke, A. M.; Lloyd-Jones, G. C. Chem.
Commun. 2003, 380−381. (b) Dyke, A. M.; Gill, D. M.; Harvey, J. N.;
Hester, A. J.; Lloyd-Jones, G. C.; Munoz, M. P.; Shepperson, I. R.
Angew. Chem., Int. Ed. 2008, 47, 5067−5070. (c) Hall, C.; Henderson,
J. L.; Ernouf, G.; Greaney, M. F. Chem. Commun. 2013, 49, 7602−
7604. (d) Yoshida, S.; Uchida, K.; Igawa, K.; Tomooka, K.; Hosoya, T.
Chem. Commun. 2014, 50, 15059−15062.
Experimental details for all chemical reactions and
X-ray single crystallographic data (CIF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors gratefully acknowledge research support of this
work by NSFC (21372268 and 21372266) and Fundamental
Research Funds for the Central Universities
(106112016CDJZR228806).
REFERENCES
■
(1) Meragelman, K. M.; West, L. M.; Northcote, P. T.; Pannell, L. K.;
McKee, T. C.; Boyd, M. R. J. Org. Chem. 2002, 67, 6671−6677.
(2) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc.
Chem. Res. 1998, 31, 805−818. (b) Hartwig, J. F. Acc. Chem. Res. 1998,
31, 852−860.
(3) (a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428−2439.
(b) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400−
5449.
(4) For recent reviews, see: (a) Wenk, H. H.; Winkler, M.; Sander,
W. Angew. Chem., Int. Ed. 2003, 42, 502−528. (b) Pellissier, H.;
Santelli, M. Tetrahedron 2003, 59, 701−730. (c) Sanz, R. Org. Prep.
Proced. Int. 2008, 40, 215−291. (d) Gampe, C. M.; Carreira, E. M.
Angew. Chem., Int. Ed. 2012, 51, 3766−3778. (e) Tadross, P. M.;
Stoltz, B. M. Chem. Rev. 2012, 112, 3550−3577. (f) Bhunia, A.; Yetra,
S. R.; Biju, A. T. Chem. Soc. Rev. 2012, 41, 3140−3152. (g) Dubrovskiy,
A. V.; Markina, N. A.; Larock, R. C. Org. Biomol. Chem. 2013, 11, 191−
218. (h) Goetz, A. E.; Shah, T. K.; Garg, N. K. Chem. Commun. 2015,
51, 34−45.
(5) (a) Tripathy, S.; LeBlanc, R.; Durst, T. Org. Lett. 1999, 1, 1973−
1975. (b) Yoshida, H.; Shirakawa, E.; Honda, Y.; Hiyama, T. Angew.
Chem., Int. Ed. 2002, 41, 3247−3249. (c) Liu, Z.; Larock, R. C. Org.
Lett. 2003, 5, 4673−4675. (d) Yoshida, H.; Minabe, T.; Ohshita, J.;
Kunai, A. Chem. Commun. 2005, 3454−3456. (e) Liu, Z.; Larock, R. C.
J. Am. Chem. Soc. 2005, 127, 13112−13113. (f) Liu, Z.; Larock, R. C. J.
Org. Chem. 2006, 71, 3198−3209. (g) Yoshida, H.; Morishita, T.;
D
Org. Lett. XXXX, XXX, XXX−XXX