6328
J. Am. Chem. Soc. 1999, 121, 6328-6329
The X-ray crystal structure of 2 revealed the molecular
geometry illustrated in Scheme 1, with the silyl ligand positioned
cis to the carbonyl and hydride ligands. The hydride ligand was
not observed, but its approximate position is evident from the
otherwise empty coordination site between Si(1) and N(1). The
Ta-Si distance is considerably longer than in 1 (2.809(2) vs
2.689(1) Å6), and the Ta-C(carbonyl) distance of 2.101(7) Å is
longer than analogous distances found in Ta(III) carbonyl
complexes such as Cp2Ta(CO)(SiHtBu2)8 (2.009(5) Å) and Cp2-
Ta(CO)H9 (2.034(7) Å).
Carbonylation Chemistry of the Tantalum Silyl
Hydride Cp*(2,6-iPr2C6H3Nd)Ta[Si(SiMe3)3]H: The
Unexpected Formation of a Ta(V) Carbonyl Complex
and the Complete Reduction of CO
Urs Burckhardt and T. Don Tilley*
Department of Chemistry
UniVersity of California at Berkeley Berkeley
California 94720-1460
The formation of a d0 metal carbonyl complex would seem
surprising, although a few examples now exist.10,11 Two possible
bonding schemes could account for the stability of 2. For a d0
Ta(V) center, donation from a ligand-based orbital into the π*
orbital of the CO ligand could lead to a stable complex.11
Alternatively, significant interaction between the silyl and hydride
ligands could result in a silane σ-complex12,13 of d2 Ta(III) and d
f π* back-bonding to the CO ligand. The observed JSi(Ta)H coupl-
ing constant of 28.5 Hz is intermediate between ranges expected
for predominant η2-silane character (50-80 Hz) and classical silyl
hydrides (e20 Hz),12a but is virtually identical to the correspond-
ing value of 28 Hz reported for Cp2Ti(H)(SiHPh2)(PMe3), which
was shown to have considerable η2-silane character.3b However,
the small difference in ν(TaH) infrared stretching frequencies for
1 and 2 (1785 and 1793 cm-1, respectively) indicates the presence
of a normal, terminal Ta-H bond in 2. In addition, the bond
angles about Si(1) in 2 are similar to those in related Ta-Si-
(SiMe3)3 complexes6 and reveal none of the distortions that would
be expected for a significant H‚‚‚Si(1) interaction.
ReceiVed February 25, 1999
Studies on the dehydropolymerization of silanes, as catalyzed
by early transition metal complexes, have focused on the possible
intermediacy of d0 metal silyl hydrides LnM(SiR3)H.1 Isolated
compounds of this type are quite rare2-4 and represent an
intriguing class of chemical species, since they contain two
reactive σ-bonds. We have therefore concentrated efforts on the
synthesis and study of such compounds, and have found that
whereas the hafnium complex CpCp*Hf[Si(SiMe3)3]H (Cp* )
η5-C5Me5) is isolable,4 the silyl hydride (ArNd)2Mo[Si(SiMe3)3]H
(Ar ) 2,6-iPr2C6H3) appears to be highly unstable with respect
to elimination of HSiMe3.5 More recently, we have achieved the
synthesis and isolation of the 16-electron silyl hydride complex
Cp*(ArNd)Ta[Si(SiMe3)3]H (1).6 Here we report the surprising
carbonylation chemistry of 1, which leads initially to the formally
d0 carbonyl complex Cp*(ArNd)Ta(CO)[Si(SiMe3)3]H (2).
A pentane solution of 1 reacted rapidly with carbon monoxide
(1 atm, -40 °C) to produce the adduct 2, obtained as orange
crystals from cold pentane in 72% yield (Scheme 1). The infrared
spectrum of 2 displays a strong carbonyl absorption at 1986 cm-1
and a weak band at 1793 cm-1 assigned to the Ta-H bond. Upon
isotopic substitution, these bands shift to νCO ) 1942 cm-1 (for
2-13C) and νTaD ) 1263 cm-1 (for 2-d). In the 1H NMR spectrum,
the hydride resonance for 2 appears at 8.11 ppm, which is
considerably upfield with respect to the hydride signal of 1 (δ )
21.49 ppm). In contrast to the latter resonance for 1, the hydride
resonance for 2 exhibits well-resolved satellites from coupling
to 29Si (JSiH ) 28.5 Hz). In the 13C NMR spectrum, the carbonyl
resonance is found at 245.7 ppm (JCH ) 2.5 Hz for 2-13C), and
the 29Si NMR spectrum contains a doublet (JSiH ) 28.5 Hz) for
the Ta-Si(SiMe3)3 resonance at -102.7 ppm (compare the singlet
at -22.9 ppm observed for 1). The above data is inconsistent
with the η2-silaacyl structure originally expected for 2, given the
reactivity of other d0 metal silyl complexes7 and the fact that xylyl
isonitrile inserts cleanly into the Ta-Si bond of 1 to produce a
stable η2-silaimine complex.6
The infrared νCO stretching frequency for 2, 1986 cm-1
,
indicates donation of electron density into the π* orbital of the
CO ligand, as this value is much lower than that observed for
+
the cationic Ta(V) carbonyl complex Cp2Ta(CO)H2 (2112
cm-1 14 and is close to values reported for related d1 metal
)
carbonyl species.15 The possibility that electron density from the
Ta-Si bond donates into the carbonyl π* orbital is suggested by
the unusually acute Si-Ta-C(carbonyl) angle of 67.6(2)°, which
results in a Si(1)‚‚‚C(11) interatomic distance of only 2.79 Å.
This situation is therefore analogous to that described for the Zr-
(IV) silanimine carbonyl complex Cp2Zr(η2-Me2SidNtBu)(CO)
(8) Jiang, Q.; Pestana, D. C.; Carroll, P. J.; Berry, D. H. Organometallics
1994, 13, 3679.
(9) Gagliardi, J. A.; Teller, R. G.; Vella, P. A.; Williams, J. M. Cryst. Struct.
Commun. 1982, 11, 861.
(10) Cationic d0 carbonyls: (a) Demerseman, B.; Pankowski, M.; Bouquet,
G.; Bigorgne, M. J. Organomet. Chem. 1976, 117, C10. (b) Guram, A. S.;
Swenson, D. C.; Jordan, R. F. J. Am. Chem. Soc. 1992, 114, 8991. (c)
Antonelli, D. M.; Tjaden, E. B.; Stryker, J. M. Organometallics 1994, 13,
763. (d) Guo, Z.; Swenson, D. C.; Guram, A. S.; Jordan, R. F. Organometallics
1994, 13, 766. (e) Brackemeyer, T.; Erker, G.; Fro¨hlich, R. Organometallics
1997, 16, 531. (f) Calderazzo, F.; Pampaloni, G.; Tripepi, G. Organometallics
1997, 16, 4943.
(1) (a) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22. (b) Corey, J. In AdVances
in Silicon Chemistry; Larson, G., Ed.; JAI Press: Greenwich, Conn., 1991;
Vol. 1, p 327. (c) Gauvin, F.; Harrod, J. F.; Woo, H. G. AdV. Organomet.
Chem. 1998, 42, 363.
(2) (a) Samuel, E.; Mu, Y.; Harrod, J. F.; Dromzee, Y.; Jeanin, Y. J. Am.,
Chem. Soc. 1990, 112, 3435. (b) Woo, H. G.; Harrod, J. F.; Henique, J.;
Samuel, E. Organometallics 1993, 12, 2883.
(3) (a) Kreutzer, K. A.; Fisher, R. A.; Davis, W. M.; Spaltenstein, E.;
Buchwald, S. L. Organometallics 1991, 10, 4031. (b) Spaltenstein, E.; Palma,
P.; Kreutzer, K. A.; Willoughby, C. A.; Davis, W. M.; Buchwald, S. L. J.
Am. Chem. Soc. 1994, 116, 10308.
(11) Neutral d0 carbonyls: (a) Manriquez, J. M.; McAlister, D. R.; Sanner,
R. D.; Bercaw, J. E. J. Am. Chem. Soc. 1976, 98, 6733. (b) Procopio, L. J.;
Carroll, P. J.; Berry, D. H. Polyhedron 1995, 14, 45. (c) Howard, W. A.;
Parkin, G.; Rheingold, A. L. Polyhedron 1995, 14, 25. (d) Howard, W. A.;
Trnka, T. M.; Parkin, G. Organometallics 1995, 14, 4037. (e) Brennan, J. G.;
Andersen, R. A.; Robbins, J. L. J. Am. Chem. Soc. 1986, 108, 335. (f) Parry,
J.; Carmona, E.; Coles, S.; Hursthouse, M. J. Am. Chem. Soc. 1995, 117,
2649.
(4) Casty, G. L.; Lugmair, C. G.; Radu, N. S.; Tilley, T. D.; Walzer, J. F.;
Zargarian, D. Organometallics 1997, 16, 8.
(5) Casty, G. L.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L.
Organometallics 1997, 16, 4746.
(12) (a) Schubert, U.; Scholz, G.; Mu¨ller, J.; Ackermann, K.; Wo¨rle, B.;
Stansfield, R. F. D. J. Organomet. Chem. 1986, 306, 303. (b) Schubert, U.
AdV. Organomet. Chem. 1990, 30, 151.
(6) Burckhardt, U.; Casty, G. L.; Tilley, T. D., manuscript in preparation.
Details on the synthesis of 1 are given in the Supporting Information.
(7) Typical values for η2-silaacyl complexes: νCO ) ca. 1500 cm-1; δ(13-
COSi) ) ca. 390 ppm. For example, see: (a) Tilley, T. D. J. Am. Chem. Soc.
1985, 107, 4084. (b) Campion, B. K.; Falk, J.; Tilley, T. D. J. Am. Chem.
Soc. 1987, 109, 2049. (c) Elsner, F. H.; Tilley, T. D.; Rheingold, A. L.; Geib,
S. J. J. Organomet. Chem. 1988, 358, 169. (d) Arnold, J.; Tilley, T. D.;
Rheingold, A. L.; Geib, S. J.; Arif, A. M. J. Am. Chem. Soc. 1989, 111, 149.
(e) Campion, B. K.; Heyn, R. H.; Tilley, T. D. J. Am. Chem. Soc. 1990, 112,
2011.
(13) (a) Tilley T. D. In Chemistry of Organic Silicon Compounds; Patai,
S., Rappoport, Z., Eds.; Wiley: New York, 1989; p 1415. (b) Tilley, T. D. In
The Silicon-Heteroatom Bond; Patai, S., Rappoport, Z., Eds.; Wiley: New
York, 1991; p 309. (c) Corey, J. Y.; Braddock-Wilking, J. Chem. ReV. 1999,
99, 175.
(14) Reynoud, J. F.; Leboeuf, J.-F.; Leblanc, J.-C.; Mo¨ıse, C. Organome-
tallics 1986, 5, 1863.
(15) (a) DeBoer, E. J. M.; Ten Cate, L. C.; Staring, A. G. J.; Teuben, J. H.
J. Organomet. Chem. 1979, 181, 61. (b) Van Raaij, E. I.; Schmulbach, C. D.;
Brintzinger, H. H. J. Organomet. Chem. 1987, 328, 275.
10.1021/ja9905849 CCC: $18.00 © 1999 American Chemical Society
Published on Web 06/19/1999