Organic Letters
Letter
Biol. 2010, 14, 371. (d) Ruijter, E.; Scheffelaar, R.; Orru, R. V. A.
Angew. Chem., Int. Ed. 2011, 50, 6234. (e) Choudhury, L. H.; Parvin,
T. Tetrahedron 2011, 67, 8213. (f) de Graaff, C.; Ruijter, E.; Orru, R.
V. A. Chem. Soc. Rev. 2012, 41, 3969. (g) Eckert, H. Molecules 2012,
Scheme 6. Proposed Mechanism Based on Experimental
Observations
17, 1074. (h) Domling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112,
̈
3083. (i) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev.
2014, 114, 8323.
(5) For a review on domino copper-catalyzed reactions, see: Liao, Q.;
Yang, X.; Xi, C. J. Org. Chem. 2014, 79, 8507.
(6) For selected recent examples, see: (a) Namani, V.; Goud, B. B.
K.; Kumari, Y. B.; Kumbham, R.; Balakrishna, K.; Bhima, B. Asian J.
Chem. 2015, 27, 4575. (b) Nooka Raju, D.; Subhadra Devi, D. V. R.;
Grace Aghastina, D.; Govinda Rao, K.; Sathish Kumar, K. World J.
Pharm. Pharm. Sci. 2015, 4, 1815. (c) Cho, H. Y.; Ul Mushtaq, A.; Lee,
J. Y.; Kim, D. G.; Seok, M. S.; Jang, M.; Han, B. W.; Kim, S.; Jeon, Y.
H. FEBS Lett. 2014, 588, 2851. (d) Chikhale, R.; Menghani, S.; Babu,
R.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M. V.;
Paradkar, A.; Khedekar, P. Eur. J. Med. Chem. 2015, 96, 30.
(7) For selected recent examples, see: (a) Zhao, N.; Liu, L.; Wang, F.;
Li, J.; Zhang, W. Adv. Synth. Catal. 2014, 356, 2575. (b) Koppireddi,
S.; Komsani, J. R.; Avula, S.; Pombala, S.; Vasamsetti, S.; Kotamraju, S.;
Yadla, R. Eur. J. Med. Chem. 2013, 66, 305. (c) Ma, D.; Lu, X.; Shi, L.;
Zhang, H.; Jiang, Y.; Liu, X. Angew. Chem., Int. Ed. 2011, 50, 1118.
(d) Morofuji, T.; Shimizu, A.; Yoshida, J. Chem. - Eur. J. 2015, 21,
3211. (e) Toulot, S.; Heinrich, T.; Leroux, F. R. Adv. Synth. Catal.
2013, 355, 3263.
overall process passed over the diverse challenges that were
exposed previously. This method represents a new, efficient
access to various 2-aminobenzothiazole derivatives.
ASSOCIATED CONTENT
■
S
* Supporting Information
(8) (a) Castanheiro, T.; Gulea, M.; Donnard, M.; Suffert, J. Eur. J.
Org. Chem. 2014, 2014, 7814. (b) Castanheiro, T.; Suffert, J.;
Donnard, M.; Gulea, M. Chem. Soc. Rev. 2016, 45, 494.
(9) In the presence of copper under aerobic conditions, it has been
reported that TMEDA can act as methylene or formyl source. In our
case, we have never observed side products resulting from the reaction
of the starting aminothiol with TMEDA. See: Zhang, L.; Peng, C.;
Zhao, D.; Wang, Y.; Fu, H.-J.; Shen, Q.; Li, J.-X. Chem. Commun. 2012,
48, 5928.
The Supporting Information is available free of charge on the
Full experimental and characterization details for all
compounds; X-ray crystallographic data for molecule 4f;
data to support the crossover experiment(PDF)
(10) Erian, A. W.; Sherif, S. M. Tetrahedron 1999, 55, 7957.
(11) (a) Wang, L.; Wang, Y.; Chen, M.; Ding, M. W. Adv. Synth.
Catal. 2014, 356, 1098. (b) Masu, H.; Sakai, M.; Kishikawa, K.;
Yamamoto, M.; Yamaguchi, K.; Kohmoto, S. J. Org. Chem. 2005, 70,
1423.
(12) For a relevant example, see the reaction of CuCN with an acid
chloride to form an acyl cyanide: Santelli, M.; El Abed, D.; Jellal, A. J.
Org. Chem. 1986, 51, 1199.
(13) In the previous study (ref 8a), it was shown that under the
reactions conditions the thiol is instantaneously transformed into
disulfide.
(14) Zou, L. H.; Priebbenow, D. L.; Wang, L.; Mottweiler, J.; Bolm,
C. Adv. Synth. Catal. 2013, 355, 2558.
(15) Notably, compound 6 is the first example for the synthesis of
this regioisomer coming from the formal condensation of acetylenic
acids and 2-aminobenzothiazoles. For the synthesis of the other
regioisomer, see: Wahe, H.; Mbafor, J. T.; Nkengfack, A. E.; Fomum,
Z. T.; Cherkasov, R. A.; Sterner, O.; Doepp, D. ARKIVOC 2003,
No. xv, 107.
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This project was supported by the University of Strasbourg
(IDEX grant for T.C.) and the Centre National de la Recherche
Scientifique (CNRS). We thank Barbara Schaeffer-Lamure
(mass analyses) and Dr. Lydia Karmazin (X-ray analyses) from
the analytical department of the University of Strasbourg. We
are also grateful to Dr. Nicolas Girard from the Faculty of
Pharmacy of the University of Strasbourg for fruitful
discussions.
(16) Gallagher, W. P.; Vo, A. Org. Process Res. Dev. 2015, 19, 1369.
REFERENCES
■
(1) For a complete review on copper-catalyzed cross-coupling
reactions, see: Copper-Mediated Cross-Coupling Reactions; Evano, G.,
Blanchard, N., Eds.; John Wiley & Sons: Hoboken, 2014.
(2) For a review of aerobic copper-catalyzed reactions, see: Allen, S.
E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev.
2013, 113, 6234.
(3) (a) Li, J.; Neuville, L. Org. Lett. 2013, 15, 6124. (b) Zhai, L.; Li,
Y.; Yin, J.; Jin, K.; Zhang, R.; Fu, X.; Duan, C. Tetrahedron 2013, 69,
10262. (c) Kim, J.; Stahl, S. J. Org. Chem. 2015, 80, 2448.
(4) For selected reviews on multicomponent reactions, see: (a)
Multicomponent Reactions; Zhu, J., Bienayme, H., Eds; Wiley-VCH:
Weinheim, 2005. (b) Hulme, C.; Gore, V. Curr. Med. Chem. 2003, 10,
51. (c) Biggs-Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin. Chem.
D
Org. Lett. XXXX, XXX, XXX−XXX