Communication
ChemComm
respectively. We acknowledge the DST-FIST program and CIF,
PARAM-ISHAN, IIT Guwahati.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 R. Steudel, Chem. Rev., 2002, 102, 3905–3945.
2 (a) J. Golik, G. Dubay, G. Groenewold, H. Kawaguchi, M. Konishi,
B. Krishnan, H. Ohkuma, K. Saitoh and T. W. Doyle, J. Am. Chem. Soc.,
1987, 109, 3462–3464; (b) M. D. Pluth, T. S. Bailey, M. D. Hammers,
M. D. Hartle, H. A. Henthorn and A. K. Steiger, Synlett, 2015, 2633–2643.
3 A. M. Jespersen, T. Christensen, N. K. Klausen, P. F. Nielsen and
H. H. Sorensen, Eur. J. Biochem., 1994, 219, 365–373.
4 D. Xiao, S. Choi, D. E. Johnson, V. G. Vogel, C. S. Johnson,
D. L. Trump, Y. J. Lee and S. V. Singh, Oncogene, 2004, 23, 5594–5606.
5 (a) M. T. Puccinelli and S. D. Stan, Int. J. Mol. Sci., 2017, 18,
1645–1662; (b) A. Malki, M. El-Saadani and A. S. Sultan, Cancer Biol.
Ther., 2009, 8, 2174–2184.
Fig. 3 (A) Morphological changes of MCF-7 cells upon treatment of 3f
(10 mM) over 72 h; (B) dose-dependency and IC50 value of 3f towards
% proliferation of MCF-7 cells; (C) H2S release profiles of 3b (25 mM) and 3f
(50 mM); (D) fluorescence microscopy images (bright field, fluorescence
and merged) of MCF-7 cells in the presence of only probe 8 (a–c) and
3f + probe 8 (d–f).
6 (a) G. A. Benavides, G. L. Squadrito, R. W. Mills, H. D. Patel, T. S. Isbell,
R. P. Patel, V. M. Darley-Usmar, J. E. Doeller and D. W. Kraus, Proc. Natl.
Acad. Sci. U. S. A., 2007, 104, 17977–17982; (b) Y. Y. Zheng, X. Y. Ji, K. L. Ji
and B. H. Wang, Acta Pharm. Sin. B, 2015, 5, 367–377.
7 (a) F. Ercole, M. R. Whittaker, M. L. Halls, B. J. Boyd, T. P. Davis and
J. F. Quinn, Chem. Commun., 2017, 53, 8030–8033; (b) M. M. Cerda,
M. D. Hammers, M. S. Earp, L. N. Zakharov and M. D. Pluth, Org.
Lett., 2017, 19, 2314–2317.
8 (a) E. Zysman-Colman and D. N. Harpp, J. Org. Chem., 2003, 68,
2487–2489; (b) R. Sato, S. Saito, H. Chiba, T. Goto and M. Saito,
Chem. Lett., 1986, 349–352; (c) Y. H. Hou, I. A. Abu-Yousef, Y. Doung
and D. N. Harpp, Tetrahedron Lett., 2001, 42, 8607–8610.
9 (a) Y. Abe, T. Horii, S. Kawamura and T. Nakabayashi, Bull. Chem.
Soc. Jpn., 1979, 52, 3461–3462; (b) H. Y. An, J. Zhu, X. B. Wang and
X. Xu, Bioorg. Med. Chem. Lett., 2006, 16, 4826–4829; (c) D. N. Harpp
and R. A. Smith, J. Org. Chem., 1979, 44, 4140–4144.
profile was observed for 3f (50 mM), which is beneficial for H2S-
mediated protective effects.20 However, a much higher but less
sustained H2S release profile was observed for DATS at 50 mM
(Fig. S118, ESI†) and thus a lower concentration was used
(Fig. 3C). The endogenous thiol-mediated H2S release profile
of 3f in a cellular medium (MCF-7) and its detection was also
studied using an H2S-sensitive fluorescent probe 8. A green
fluorescence emission from 9 (reduction of 8 by H2S) indicated
the release of H2S from 3f by endogenous thiols. These observations
indicate that suitably designed organotrisulfides can be good
candidates for developing potent anti-cancer agents having H2S-
mediated cellular protections.
10 R. C. Fuson, C. C. Price, D. M. Burness, R. E. Foster, W. R. Hatchard
and R. D. Lipscomb, J. Org. Chem., 1946, 11, 487–498.
11 (a) B. Milligan, B. Saville and J. M. Swan, J. Chem. Soc., 1963, 3608–3614;
(b) B. Milligan, B. Saville and J. M. Swan, J. Chem. Sci., 1961, 4850–4853.
12 P. Sinha, A. Kundu, S. Roy, S. Prabhakar, M. Vairamani, A. R. Sankar
and A. C. Kunwar, Organometallics, 2001, 20, 157–162.
13 A. Baker, M. Graz, R. Saunders, G. J. S. Evans, S. Kaul and T. Wirth,
J. Flow Chem., 2013, 3, 118–121.
14 C. L. Bianco, T. Akaike, T. Ida, P. Nagy, V. Bogdandi, J. P. Toscano,
Y. Kumagai, C. F. Henderson, R. N. Goddu, J. Lin and J. M. Fukuto,
Br. J. Pharmacol., 2019, 176, 671–683.
15 H. Distler, Angew. Chem., Int. Ed. Engl., 1967, 6, 544–553.
16 (a) K. El-Bayoumy, R. Sinha, J. T. Pinto and R. S. Rivlin, J. Nutr., 2006,
136, 864s–869s; (b) A. Herman-Antosiewicz, A. A. Powolny and
S. V. Singh, Acta Pharmacol. Sin., 2007, 28, 1355–1364.
17 H. K. Na, E. H. Kim, M. A. Choi, J. M. Park, D. H. Kim and Y. J. Surh,
Biochem. Pharmacol., 2012, 84, 1241–1250.
18 S. G. Bolton, M. M. Cerda, A. K. Gilbert and M. D. Pluth, Free Radical
Biol. Med., 2019, 131, 393–398.
19 R. R. Moest, Anal. Chem., 1975, 47, 1204–1205.
20 H. Yao, S. S. Luo, J. K. Liu, S. W. Xie, Y. P. Liu, J. Y. Xu, Z. Y. Zhu and
S. T. Xu, Chem. Commun., 2019, 55, 6193–6196.
In summary, we show herein for the first time that the
selectivity between symmetrical trisulfides and disulfides can
be achieved using Na2S as the key sulfur-transfer agent by
tuning the temperature and the solvent under mild, greener,
catalyst-free and additive-free conditions with a wider substrate
scope. Mechanistic studies highlight the interference by the
co-produced Na2SO3 for the co-formation of disulfides along
with trisulfides. Furthermore, excellent anti-proliferative activities
of trisulfides along with a sustained H2S release profile open up
newer avenues for trisulfides as chemotherapeutic and cardio-
protective compounds for future studies compared to the corres-
ponding disulfides. However, further studies are warranted for a
detailed structure–activity correlation.
KPB and HKS acknowledge SERB for DST-INSPIRE (Ref:
IFA12-CH-68) and Ramanujan (SB/S2/RJN-004/2015) fellowships,
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13534--13537 | 13537