propylsilyl trifluoromethanesulfonate (0.27 mL, 1.45 mmol) at
0 ЊC, and the reaction mixture was stirred at room temperature
for 9 h. After addition of aqueous saturated NH4Cl (3 mL), the
mixture was worked-up with Et2O (5 mL × 3). The residue was
purified by silica gel column chromatography (hexane) to afford
a silyl enol ether 13 (147 mg, 191 µmol, 79%) as a colorless oil;
[α]D26 Ϫ0.48 (c 1.03, CHCl3); νmax/cmϪ1 1625, 1465, 885 and 835;
δH(CDCl3) 0.02 (3H, s), 0.22 (3H, s), 0.85 (9H, s), 1.07 (57H,
m), 1.14 (3H, d, J = 6.1 Hz), 1.23 (9H, m), 1.24 (1H, m), 1.74
(1H, m), 2.08 (1H, m), 3.78 (1H, br s), 3.87 (1H, m), 4.13 (1H,
br s), 4.20 (1H, s) and 4.50 (1H, s); δC(CDCl3) Ϫ4.51 (q), Ϫ4.18
(q), 12.9 (3C, d), 13.0 (3C, d), 13.6 (3C, d), 15.3 (s), 18.3
(12C, q), 18.5 (6C, q), 22.7 (q), 26.0 (3C, q), 32.7 (d), 44.0 (t),
66.2 (d), 75.4 (d), 78.8 (d), 90.1 (t) and 159.4 (s); m/z (FABMS)
773 (Mϩ); m/z (HRFABMS) 773.5365 (Mϩ. Calc. for
C42H92O4Si4: 773.5321).
(1H, dd, J = 9.5 and 14.2 Hz), 2.11 (1H, m), 2.45 (1H, s), 2.80
(2H, m), 3.52 (1H, m), 3.83 (1H, m), 3.96 (1H, m) and 4.49 (2H,
m); m/z (FABMS) 907 (M ϩ Na)ϩ; m/z (HRFABMS) 907.6497
[(M ϩ Na)ϩ. Calc. for C48H100O6Si4Na, 907.6494].
C-14–C-26 segment: (3S,5S,8R,9S,10R,12S)-12-(tert-butyl-
dimethylsilyloxy)-3,10-dimethyl-3,5,8,9-tetrakis(triisopropyl-
silyloxy)tridec-1-yn-7-one (2)
A solution of compound 14 (18 mg, 20.4 µmol) in CH2Cl2 was
treated with triisopropylsilyl trifluoromethanesulfonate (40 µL,
215 µmol) and 2,6-lutidine (35 µL, 300 µmol) at room temp. for
36 h. After addition of H2O (1 mL), the mixture was worked-up
with EtOAc (2 mL × 3). The residue was purified by silica gel
column chromatography (hexane) to give the C-14–C-26 seg-
ment 2 (15 mg, 14.4 µmol, 70%) as a colorless oil; [α]D27 Ϫ9.2 (c
1.00, CHCl3); νmax/cmϪ1 3310, 1725 and 835; δH(CDCl3) 0.03
(3H, s), 0.04 (3H, s), 0.81 (12H, d, J = 6.8 Hz), 0.87 (9H, s), 1.12
(79H, m), 1.58 (3H, s), 1.60 (1H, m), 1.80 (1H, dd, J = 5.6 and
13.5 Hz), 2.07 (1H, dd, J = 5.6 and 13.5 Hz), 2.14 (1H, m), 2.43
(1H, s), 3.02 (2H, m), 3.84 (1H, m), 3.92 (1H, m), 4.35 (1H, d,
J = 4.7 Hz) and 4.66 (1H, m); δC(CDCl3) Ϫ4.23 (q), Ϫ4.18 (q),
12.5 (6C, d), 13.1 (3C, d), 13.8 (3C, d), 15.0 (s), 17.9 (q), 18.1
(3C, q), 18.2 (6C, q), 18.3 (3C, q), 18.4 (6C, q), 18.5 (6C, s), 24.6
(q), 26.0 (3C, q), 30.4 (d), 30.5 (q), 45.2 (t), 50.0 (t), 52.5 (t),
66.2 (d), 68.3 (d), 73.2 (s), 80.1 (d), 88.1 (s) and 206.9 (s);
m/z (FABMS) 1041 (M ϩ H)ϩ; m/z (HRFABMS) 1041.7990
[(M ϩ H)ϩ. Calc. for C57H121O6Si5: 1041.8010].
C-19–C-26 unit: (3R,4S, 5R,7S)-3,4-bis(triisopropylsilyloxy)-
7-(tert-butyldimethylsilyloxy)-5-methyloctan-2-one (4)
Compound 13 (155.3 mg, 201 µmol) in CH2Cl2 (2 mL) was
treated with pyridinium toluene-p-sulfonate (53 mg, 207 µmol)
at room temp. for 10 h. After addition of water (10 mL), the
reaction mixture was worked-up with Et2O (15 mL × 3). The
residue was purified by silica gel column chromatography
(hexane–Et2O, 8:1–5:1) to give a ketone 4 (114.7 mg, 186 µmol,
93%) as a colorless oil; [α]D24 Ϫ34.4 (c 1.07, CHCl3); νmax/cmϪ1
1725 and 835; δH(CDCl3) 0.00 (3H, s), 0.01 (3H, s), 0.79 (6H, d,
J = 5.6 Hz), 0.85 (9H, s), 1.06 (21H, m), 1.15 (21H, m), 1.22
(1H, m), 1.60 (1H, m), 2.12 (1H, m), 2.24 (3H, s), 3.83 (1H, m),
3.90 (1H, m) and 4.34 (1H, d, J = 4.6 Hz); δC(CDCl3) Ϫ4.7 (q),
Ϫ4.1 (q), 12.5 (3C, d), 13.0 (3C, d), 14.5 (s), 17.8 (q), 18.15 (6C,
q), 18.18 (4C, q), 18.4 (2C, q), 24.7 (q), 25.9 (3C, q), 29.2
(q), 31.0 (d), 44.9 (d), 66.0 (d), 80.0 (d), 81.7 (d) and 208.6 (s);
m/z (FABMS) 617 (M ϩ H)ϩ; m/z (HRFABMS) 617.4832
[(M ϩ H)ϩ. Calc. for C33H73O4Si: 617.4817].
Acknowledgements
We are grateful to Professor M. Ishibashi, Chiba University, for
helpful discussions. This work was partly supported by a
Grant-in-Aid for Scientific Research from the Ministry of
Education, Science, Sports, and Culture of Japan. H. I. thanks
Research Fellowships of the Japanese Society for the Promo-
tion of Science for Young Scientists.
Aldol coupling between C-14–C18 (3) and C-19–C-26 (4) units
References
To a stirring solution of the ketone 4 (120.6 mg, 196 µmol) in
THF (2 mL) was added 0.5 M potassium hexamethyldisilazide
in THF (570 µL, 285 µmol) at Ϫ78 ЊC. After being stirred at
Ϫ78 ЊC for 30 min, the mixture was added to a solution of
aldehyde 3 (43.7 mg, 163 µmol) in THF (2 mL) at Ϫ78 ЊC, and
the mixture was stirred at Ϫ78 ЊC for 30 min. After addition
of 1 M phosphate buffer (pH 7.3, 2 mL), the reaction mixture
was worked-up with EtOAc (10 mL × 3). The residue was
eluted on a silica gel column (hexane–CHCl3, 2:1) to yield
(3S,5S,8R,9S,10R,12S)-12-(tert-butyldimethylsilyloxy)-3,10-
dimethyl-5-hydroxy-3,8,9-tris(triisopropylsilyoxy)tridec-1-yn-7-
one 14 (43.3 mg, 48.9 µmol, 30%) and its 5R-isomer 15 (28.9
mg, 32.6 µmol, 20%), and the ketone 4 (55.4 mg, 89.8 µmol,
46%). 14: a colorless oil; [α]D25 Ϫ15 (c 0.93, CHCl3); νmax/cmϪ1
1720 and 835; δH(CDCl3) 0.02 (3H, s), 0.03 (3H, s), 0.79 (9H, d,
J = 5.6 Hz), 0.87 (9H, s), 1.11 (61H, m), 1.59 (1H, m), 1.80 (1H,
dd, J = 1.7 and 14.1 Hz), 1.95 (1H, dd, J = 8.9 and 14.1 Hz),
1.63 (3H, s), 2.17 (1H, m), 2.43 (1H, s), 2.69 (1H, dd, J = 2.5
and 18.4 Hz), 3.00 (1H, dd, J = 8.1 and 18.4 Hz), 3.46 (1H, d,
J = 1.9 Hz), 3.84 (1H, m), 3.97 (1H, m) and 4.41 (2H, m);
δC(CDCl3) Ϫ4.6 (q), Ϫ4.1 (q), 12.5 (6C, d), 13.1 (3C, d), 14.5 (s),
18.1 (4C, q), 18.2 (6C, q), 18.3 (3C, q), 18.4 (6C, q), 24.7 (q),
25.9 (3C, q), 30.5 (d), 30.6 (q), 45.3 (t), 49.0 (t), 51.1 (t), 64.6 (d),
66.0 (d), 69.0 (d), 72.4 (s), 80.0 (d), 81.2 (d), 88.0 (s) and 210.7
(s); m/z (FABMS) 907 (M ϩ Na)ϩ; m/z (HRFABMS) 907.6491
[(M ϩ Na)ϩ. Calc. for C48H100O6Si4Na: 907.6494]. 15: a color-
less oil; [α]D27 Ϫ45 (c 1.00, CHCl3); νmax/cmϪ1 3530, 1720 and 835;
δH(CDCl3) 0.02 (3H, s), 0.03 (3H, s), 0.78 (9H, m), 0.86 (9H, s),
1.12 (61H, m), 1.59 (1H, m), 1.60 (3H, s), 1.77 (1H, m), 1.89
1 M. Ishibashi, Y. Ohizumi, M. Hamashima, H. Nakamura, Y.
Hirata, T. Sasaki and J. Kobayashi, J. Chem. Soc., Chem. Commun.,
1987, 1127.
2 J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Ohizumi, Y. Yamasu,
Y. Hirata, T. Sasaki, T. Ohta and S. Nozoe, J. Nat. Prod., 1989, 52,
1036.
3 I. Bauer, L. Maranda, Y. Shimizu, R. W. Peterson, L. Cornell,
J. R. Steiner and J. Clardy, J. Am. Chem. Soc., 1994, 116, 2657.
4 M. Ishibashi, H. Ishiyama and J. Kobayashi, Tetrahedron Lett.,
1994, 35, 8241.
5 T. K. Chakraborty, D. Thippeswamy, V. R. Suresh and S.
Jayaprakash, Chem. Lett., 1997, 563.
6 T. K. Chakraborty and V. R. Suresh, Chem. Lett., 1997, 565.
7 D.-H. Lee and S.-W. Lee, Tetrahedron Lett., 1997, 45, 7909.
8 B. M. Cid and G. Pattenden, Synlett, 1998, 540.
9 E. J. Corey, M. J. Grogan and M. C. Noe, Tetrahedron Lett., 1994,
35, 6427.
10 E. J. Corey, A. Guzman-Perez and M. C. Noe, J. Am. Chem.
Soc., 1995, 117, 10805.
11 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 36, 3769.
12 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino,
J. Hartung, K.-S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang,
D. Xu and X.-L. Zhang, J. Org. Chem., 1992, 57, 2769.
13 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
14 T. Imaeda, Y. Hamada and T. Shioiri, Tetrahedron Lett., 1994, 35,
591.
15 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem.
Soc., 1991, 113, 4092.
Paper 9/00938H
1166
J. Chem. Soc., Perkin Trans. 1, 1999, 1163–1166