Y. Tajima, M. Kobayashi, K. Noguchi, K. Tanaka
SHORT COMMUNICATION
[10] For examples of the transition-metal-catalyzed reactions
through cleavage of the carboxylic acid anhydride C–O bond,
see: a) M. S. Stephan, A. J. J. M. Teunissen, G. K. W. Verzijl,
J. G. de Vries, Angew. Chem. 1998, 110, 688; Angew. Chem. Int.
Ed. 1998, 37, 662; b) L. J. Gooßen, K. Ghosh, Angew. Chem.
2001, 113, 3566; Angew. Chem. Int. Ed. 2001, 40, 3458; c) E. A.
Bercot, T. Rovis, J. Am. Chem. Soc. 2002, 124, 174; d) E. M.
O’Brien, E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2003, 125,
10498; e) E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2004, 126,
10248; f) Y. Zhang, T. Rovis, J. Am. Chem. Soc. 2004, 126,
15964; g) E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2005, 127,
247; h) J. B. Johnson, R. T. Yu, P. Fink, E. A. Bercot, T. Rovis,
Org. Lett. 2006, 8, 4307; i) J. B. Johnson, E. A. Bercot, C. M.
Williams, T. Rovis, Angew. Chem. 2007, 119, 4598; Angew.
Chem. Int. Ed. 2007, 46, 4514; j) R. L. Rogers, J. L. Moore, T.
Rovis, Angew. Chem. 2007, 119, 9461; Angew. Chem. Int. Ed.
2007, 46, 9301; k) J. B. Johnson, E. A. Bercot, J. M. Rowley,
G. W. Coates, T. Rovis, J. Am. Chem. Soc. 2007, 129, 2718; l)
M. J. Cook, T. Rovis, J. Am. Chem. Soc. 2007, 129, 9302; m)
J. B. Johnson, M. J. Cook, T. Rovis, Tetrahedron 2009, 65, 3202;
n) P. Mamone, G. Danoun, L. J. Gooßen, Angew. Chem. 2013,
125, 6836; Angew. Chem. Int. Ed. 2013, 52, 6704.
[11] H. Shimizu, I. Nagasaki, T. Saito, Tetrahedron 2005, 61, 5405.
[12] CCDC-894218 (for 3aa) contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[13] Allylic gem-dicarboxylates have been used as useful substrates
in various transition-metal-catalyzed reactions, see: a) B. M.
Trost, C. B. Lee, J. M. Weiss, J. Am. Chem. Soc. 1995, 117,
7247; b) B. M. Trost, X. Ariza, Angew. Chem. 1997, 109, 2749;
Angew. Chem. Int. Ed. Engl. 1997, 36, 2635; c) B. M. Trost,
M. L. Crawley, C. B. Lee, J. Am. Chem. Soc. 2000, 122, 6120;
d) B. M. Trost, C. B. Lee, J. Am. Chem. Soc. 2001, 123, 3671;
e) B. M. Trost, C. B. Lee, J. Am. Chem. Soc. 2001, 123, 3687;
f) B. M. Trost, C. Lee, J. Am. Chem. Soc. 2001, 123, 12191; g)
B. M. Trost, M. L. Crawley, C. B. Lee, Chem. Eur. J. 2006, 12,
2171; h) S. B. Han, H. Han, M. J. Krische, J. Am. Chem. Soc.
2010, 132, 1760.
Acknowledgments
This work was supported partly by the Ministry of Education, Cul-
ture, Sports, Science and Technology (MEXT), Japan through
Grants-in-Aid for Scientific Research (grant numbers 25105714,
23105512, and 20675002) and by the Japan Science and Technology
Agency (JST), Japan through ACT-C. The authors are grateful to
Takasago International Corporation for the gift of H8-binap and
segphos and to Umicore for generous support in supplying the rho-
dium complexes.
[1] For a review of the transition-metal-catalyzed cyclization reac-
tions of alkynyl aldehydes via oxametallacycle intermediates,
see: K. Tanaka, Y. Tajima, Eur. J. Org. Chem. 2012, 3715.
[2] For reviews of the transition-metal-catalyzed coupling reac-
tions of alkynes with aldehydes, see: a) J. Montgomery, Acc.
Chem. Res. 2000, 33, 467; b) S. Ikeda, Angew. Chem. 2003, 115,
5276; Angew. Chem. Int. Ed. 2003, 42, 5120; c) J. Montgomery,
Angew. Chem. 2004, 116, 3980; Angew. Chem. Int. Ed. 2004,
43, 3890; d) H.-Y. Jang, M. J. Krische, Acc. Chem. Res. 2004,
37, 653; e) M. Fujiwara, I. Ojima, Modern Rhodium-Catalyzed
Organic Reactions (Ed.: P. A. Evans), Wiley-VCH, Weinheim,
Germany, 2005, p. 129; f) J. Montgomery, G. J. Sormunen, in:
Metal Catalyzed Reductive C–C Bond Formation: A Departure
from Preformed Organometallic Reagents (Ed.: M. J. Krische),
Springer, Berlin, 2007, p. 1; g) J. Montgomery, G. J. Sormunen,
Top. Curr. Chem. 2007, 279, 1; h) T. Miura, M. Murakami,
Chem. Commun. 2007, 217; i) M.-Y. Ngai, J.-R. Kong, M. J.
Krisch, J. Org. Chem. 2007, 72, 1063; j) E. Skucas, M.-Y. Ngai,
V. Komanduri, M. J. Krische, Acc. Chem. Res. 2007, 40, 1394;
k) R. M. Moslin, K. Miller-Moslin, T. F. Jamison, Chem. Com-
mun. 2007, 4441; l) M. Jeganmohan, C.-H. Cheng, Chem. Eur.
J. 2008, 14, 10876.
[3] W. E. Crowe, M. J. Rachita, J. Am. Chem. Soc. 1995, 117, 6787.
[4] a) E. Oblinger, J. Montgomery, J. Am. Chem. Soc. 1997, 119,
9065; b) X.-Q. Tang, J. Montgomery, J. Am. Chem. Soc. 1999,
121, 6098; c) X.-Q. Tang, J. Montgomery, J. Am. Chem. Soc.
2000, 122, 6950; d) Y. Ni, K. K. D. Amarasinghe, J. Montgom-
ery, Org. Lett. 2002, 4, 1743; e) G. M. Mahandru, G. Liu, J.
Montgomery, J. Am. Chem. Soc. 2004, 126, 3698; f) J. Chan,
T. F. Jamison, J. Am. Chem. Soc. 2004, 126, 10682; g) E. A.
Colby, K. C. O’Brien, T. F. Jamison, J. Am. Chem. Soc. 2005,
127, 4297; h) B. Knapp-Reed, G. M. Mahandru, J. Montgom-
ery, J. Am. Chem. Soc. 2005, 127, 13156; i) C. C. Chrovian, B.
Knapp-Reed, J. Montgomery, Org. Lett. 2008, 10, 811; j) P.
Liu, P. McCarren, P. H.-Y. Cheong, T. F. Jamison, K. N. Houk,
J. Am. Chem. Soc. 2010, 132, 2050; k) R. D. Baxter, J. Mont-
gomery, J. Am. Chem. Soc. 2011, 133, 5728; l) A.-R. Shareef,
D. H. Sherman, J. Montgomery, Chem. Sci. 2012, 3, 892; for
the related cyclization of alkynyl cycloalkanones, see: m) N.
Saito, Y. Sugimura, Y. Sato, Org. Lett. 2010, 12, 3494.
[5] a) I. Ojima, M. Tzamarioudaki, C.-Y. Tsai, J. Am. Chem. Soc.
1994, 116, 3643; b) B. Bennacer, M. Fujiwara, S.-Y. Lee, I.
Ojima, J. Am. Chem. Soc. 2005, 127, 17756; c) J. U. Rhee, M. J.
Krische, J. Am. Chem. Soc. 2006, 128, 10674; d) J. U. Rhee,
R. A. Jones, M. J. Krische, Synthesis 2007, 3427.
[14] T. Kan, T. Fukuyama, Chem. Commun. 2004, 353.
[15] Alternatively, 3 and 4 might be generated from 1 and 2 via
cyclic enal K and enone L. This transformation might be cata-
lyzed by the cationic rhodium or HBF4, which can be generated
in situ owing to adventitious water. (The HBF4-catalyzed cycli-
zation of γ-alkynyl aldehydes to cyclic enones was reported,
see: J. U. Rhee, M. J. Krische, Org. Lett. 2005, 7, 2493.) How-
ever, the reactions of 1a and 1b with 2a in the presence of
HBF4·OEt2 (1 mol-%) at 80 °C for 24 h did not afford 3aa and
4ba at all (Ͻ5% conv. of 1a and 1b). As already shown in our
previous report, the reactions of 1a and 1b in the presence of
the cationic rhodium(I)/H8-binap or binap catalyst at room
temperature afford dimers of 1a and 1b through the formation
of the corresponding oxarhodacyclopentene intermediates (see
ref.[7,8]).
[6] R. L. Patman, M. R. Chaulagain, V. M. Williams, M. J.
Krische, J. Am. Chem. Soc. 200, 131, 2066.
[7] R. Tanaka, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2010,
132, 1238.
[8] K. Masuda, N. Sakiyama, R. Tanaka, K. Noguchi, K. Tanaka,
J. Am. Chem. Soc. 2011, 133, 6918.
[9] The rhodium-catalyzed and hydrogen-mediated intermolecular
hydroacylation of alkenes with carboxylic acid anhydrides was
reported, see: a) K. Kokubo, M. Miura, M. Nomura, Organo-
metallics 1995, 14, 4521; b) Y.-T. Hong, A. Barchuk, M. J.
Krische, Angew. Chem. 2006, 118, 7039; Angew. Chem. Int. Ed.
2006, 45, 6885.
Furthermore, the reactions of benzaldehyde and acetophenone
with 2a in the presence of the cationic rhodium(I)/H8-binap or
binap catalyst at 80 °C for 24 h did not afford the correspond-
5270
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 5266–5271