4,40-di-tert-butyl-2,20-bipyridine (dtbpy).12 This reaction
allowed the access to various functionalities via one-pot seq-
uences, such as halogenation, cyanation, alkylation, hydro-
xylation, or amination.13 Additionally, one-pot synthesis
of 3,5-disubstituted potassium aryltrifluoroborates via Ir-
catalalyzed CꢀH borylation followed by treatment with
KHF2 has been reported, but not for SF5-aryl substrates.14
Compared to other boron reagents, organotrifluorobo-
rate salts are exceptionally stable toward air and moisture.
Moreover, they are easily isolated, usually by simple
precipitation or recrystallization from acetone with diethyl
ether, and they show comparable reactivity to boronic
acids in many reactions, such as SuzukiꢀMiyaura cross-
coupling.15,16 Consequently, we decided to examine the
borylation reaction for the introduction of trifluorobo-
rates onto SF5-containing scaffolds.
In prospecting experiments we were delighted to note
that the pentafluorosulfanyl group displayed excellent
compatibility with Ir-catalyzed CꢀH borylation condi-
tions of Hartwig, Ishiyama, and Miyaura. After complete
conversion of the precursor, direct addition of water and
KHF2 to the reaction mixture converted the resulting
boronic ester into the corresponding aryltrifluoroborate
(Table 1). To the best of our knowledge, this is the first
example of the CꢀH activation reaction with a pentafluor-
osulfanyl-containing aryl system. Thus, from readily
available meta-substituted SF5-aryl compounds,17 we were
able to provide access to this novel class of buildings
blocks. Several examples with various substituents in
meta-position of the SF5-group were obtained in good to
high yields, such as methoxy, methyl ester, or halogens.
Interestingly, contrary to most of the potassium organotri-
fluoroborates, SF5ꢀArBF3K are soluble in diethyl ether,
emphasizing the lipophilicity of the pentafluorosulfanyl
group. Therefore, isolation was achieved by precipitation
from acetone with chloroform or dichloromethane. The
pinacol coproduct could be removed by additional wash-
ing of the solids to afford the SF5-substituted potassium
aryltrifluoroborates in high purity, according to 19F and
1H NMR spectra. The simplicity of the approach is under-
scored in a preparative scale reaction that was conducted
to give more than 3 g of 2a from a meta-methoxy precursor
in 92% yield.
Scheme 1. Access to SF5ꢀArBF3K via CꢀH Borylation
nitro group,8 or hydrogen9 have been described. Despite
the increasing interest in exploring and diversifying the
chemistry of aryl-SF5 compounds, their utility as sub-
strates in a number ofmodernmetal-catalyzed transforma-
tions remains underexplored. Knochel prepared mag-
nesium reagents, by Br/Mg exchange using iPrMgCl LiCl
3
and by directed metalation using TMP2Mg 2LiCl. The
3
handful of examples underwent further transformations,
such as cross-coupling reactions.10 However, the current
portfolio of basic building blocks incorporating SF5 re-
mains limited. Indeed, in most of the synthesis work, the
routes can be traced back to the same set of starting
materials: para-ormeta-(pentafluorosulfanyl)nitrobenzene.
Because of our interest in providing greater access to
novel building blocks for drug discovery,11 we have been
exploring ways of developing new approaches to SF5
compounds.
Hartwig, Ishiyama, and Miyaura developed a powerful
catalytic system for the meta-directed CꢀH borylation
of 1,3-disubstituted arenes using [{Ir(OMe)(cod)}2] and
(7) (a) Sipyagin, A. M.; Bateman, C. P.; Tan, Y. T.; Thrasher, J. S.
J. Fluorine Chem. 2001, 112, 287–295. (b) Sipyagin, A. M.; Enshov, V. S.;
Kashtanov, S. A.; Bateman, C. P.; Mullen, B. D.; Tan, Y. T.; Thrasher,
J. S. J. Fluorine Chem. 2004, 125, 1305–1316.
ꢀꢁ
´
ꢀ
(8) Beier, P.; Pastyrıkova, T.; Vida, N.; Iakobson, G. Org. Lett. 2011,
13, 1466–1469.
(9) (a) Beier, P.; Pastyrikova, T.; Iakobson, G. J. Org. Chem. 2011,
76, 4781–4786. (b) Beier, P.; Pastyrikova, T. Tetrahedron Lett. 2011, 52,
4392–4394. (c) Pastyrikova, T.; Iakobson, G.; Vida, N.; Pohl, R.; Beier,
P. Eur. J. Org. Chem. 2012, 2123–2126. (d) Vida, N.; Beier, P. J. Fluorine
Chem. 2012, 143, 130–134. (e) Beier, P.; Pastyrikova, T. Beilstein J. Org.
Chem. 2013, 9, 411–416.
In order to demonstrate the usefulness of these SF5-
building blocks, we set out to explore their reactivity in the
(10) Frischmuth, A.; Unsinn, A.; Groll, K.; Stadtmuller, H.; Knochel,
P. Chem.;Eur. J. 2012, 18, 10234–10238.
(11) (a) Wuitschik, G.; Rogers-Evans, M.; Muller, K.; Fischer, H.;
€
(13) For a review, see: Mkhalid, I. A. I.; Barnard, J. H.; Marder,
T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890–931.
(14) Murphy, J. M.; Tzchucke, C. C.; Hartwig, J. F. Org. Lett. 2007,
9, 757–760.
Wagner, B.; Schuler, F.; Polonchuk, L.; Carreira, E. M. Angew. Chem.,
Int. Ed. 2006, 45, 7736–7739. (b) Wuitschik, G.; Rogers-Evans, M.;
€
Buckl, A.; Bernasconi, M.; Marki, M.; Godel, T.; Fischer, H.; Wagner,
B.; Parrilla, I.; Schuler, F.; Schneider, J.; Alker, A.; Schweizer, W. B.;
(15) (a) Molander, G. A.; Biolatto, B. Org. Lett. 2002, 4, 1867–1870.
(b) Dreher, S. D.; Dormer, P. G.; Sandrock, D. L.; Molander, G. A.
€
Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47, 4512–4515.
(c) Wuitschik, G.; Carreira, E. M.; Wagner, B.; Fischer, H.; Parrilla, I.;
ꢀ
J. Am. Chem. Soc. 2008, 130, 9257–9259. (c) Sandrock, D. L.; Jean-Gerard,
€
Schuler, F.; Rogers-Evans, M.; Muller, K. J. Med. Chem. 2010, 53,
3227–3246. (d) For a review, see: Burkhard, J. A.; Wuitschik, G.;
L.; Chen, C. Y.; Dreher, S. D.; Molander, G. A. J. Am. Chem. Soc. 2010,
132, 17108–17110. For review, see: (d) Molander, G. A.; Ellis, N. Acc.
Chem. Res. 2007, 40, 275–286.
(16) (a) Darses, S.; Genet, J. P.; Brayer, J. L.; Demoute, J. P.
Tetrahedron Lett. 1997, 38, 4393–4396. (b) Darses, S.; Michaud, G.;
Genet, J. P. Tetrahedron Lett. 1998, 39, 5045–5048. (c) Darses, S.;
Michaud, G.; Genet, J. P. Eur. J. Org. Chem. 1999, 1875–1883. For a
review, see: (d) Darses, S.; Genet, J. P. Chem. Rev. 2008, 108, 288–325.
€
Rogers-Evans, M.; Muller, K.; Carreira, E. M. Angew. Chem., Int. Ed.
2010, 49, 9052–9067. (e) Li, D. B.; Rogers-Evans, M.; Carreira, E. M.
Org. Lett. 2011, 13, 6134–6136. (f) Li, D. B.; Rogers-Evans, M.;
Carreira, E. M. Org. Lett. 2013, 15, 4766–4769.
(12) (a) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi,
N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390–391. (b)
Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem.,
Int. Ed. 2002, 41, 3056–3058. (c) Boller, T. M.; Murphy, J. M.; Hapke,
M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005,
127, 14263–14278.
^
^
^
^
(17) Most of these starting materials are commercially available, but
in the present case, they were prepared in our laboratory. See Supporting
Information for detailed preparations.
B
Org. Lett., Vol. XX, No. XX, XXXX