Communication
Conclusions
These studies constitute the synthesis of two fully functional-
ized, enantiopure DEFG synthons (5 and 6) ready for late-stage
coupling with our carbocyclic core structures (3 and 4). The
synthetic approaches described encompass strategies begin-
ning from a chiral glycal, racemic or enantiopure glycidol, and
ultimately a catalytic enantioselective approach employing a
hetero-Diels–Alder reaction followed by a diastereoselective
conjugate addition. Additionally, selective ring-opening and
ring-closing events allow for the efficient elaboration of the key
δ-lactone. The strategic choice of Boc as the amide protecting
group enables selective mono-addition of vinylmagnesium
bromide, and ultimately a neopentylalkyne, to the caprolactam.
Efforts to combine these synthons with carbocyclic core struc-
tures analogous to 3 and 4 are ongoing.
Scheme 6. Conversion of the δ-lactone to the ε-lactam and enone synthons.
Acknowledgments
In order to determine the feasibility of the addition of hin-
dered alkyne 4 to caprolactam 6, a model alkyne was synthe-
sized. In order to generate a single diastereomer of the addition
product, it was necessary to generate the model alkyne as a
single enantiomer. Fortunately, α-quaternary allyl ketone 26
was readily available using our asymmetric alkylation method-
ology[19] and could be advanced to a suitable model system
(Scheme 7). Thus, allyl ketone 26 was smoothly isomerized to
the internal olefin, which was then ketalized to provide olefin
27. Ozonolysis with mild reductive workup allowed access to
desired aldehyde 28. Treatment with the Ohira–Bestman rea-
gent (29) induced sluggish Gilbert–Seyferth homologation to
afford alkyne 30 and recovered aldehyde 28. Deprotonation of
the alkyne with KHMDS and trapping with caprolactam 6 pro-
vided alkynone 31. Hydrogenation of the alkyne readily pro-
vided the final side-chain appended model product 32. This
unoptimized approach provides a key proof-of-concept sup-
porting the challenging disconnection of tethered tricycle 2 to
carbocyclic core 4 and caprolactam 6.
The authors wish to thank the NIH-NIGMS (R01GM080269), the
Tobacco Related Disease Research Program (Fellowship to
J. T. B.), the John and Fannie Hertz Foundation (predoctoral fel-
lowship to D. C. B.), Novartis (predoctoral fellowship to J. L. S.),
the Philanthropic Education Organization (Scholar Award to
J. L. S.), and Abbott, Amgen, Boehringer-Ingelheim, Bristol-My-
ers Squibb, Merck, and Caltech for their generous financial sup-
port. The authors thank Professor Karl Scheidt (Northwestern)
for helpful early discussions.
Keywords: Zoanthamines · Zoanthenol · Enantioselectivity ·
Hetero-Diels–Alder reaction · Allylation
[1] C. B. Roa, A. S. R. Anjaneyula, N. S. Sarma, Y. Venkatateswarlu, R. M.
Rosser, D. J. Faulkner, M. H. M. Chen, J. Clardy, J. Am. Chem. Soc. 1984,
106, 7983–7984.
[2] D. C. Behenna, J. L. Stockdill, B. M. Stoltz, Angew. Chem. Int. Ed. 2008, 47,
2365–2386; Angew. Chem. 2008, 120, 2400.
[3] a) M. Miyashita, M. Sasaki, I. Hattori, M. Sakai, K. Tanino, Science 2004,
305, 495–499; b) Y. Takahashi, F. Yoshimura, K. Tanino, M. Miyashita,
Angew. Chem. Int. Ed. 2009, 48, 8905–8908; Angew. Chem. 2009, 121,
9067; c) F. Yoshimura, K. Tanino, M. Miyashita, Tetrahedron Lett. 2014, 55,
2895–2903; d) F. Yoshimura, K. Tanino, M. Miyashita, Acc. Chem. Res.
2012, 45, 746–755.
[4] a) Y. Murata, D. Yamashita, K. Kitahara, Y. Minasako, A. Nakazaki, S. Kobay-
ashi, Angew. Chem. Int. Ed. 2008, 47, 1400–1403; Angew. Chem. 2008,
120, 1422; b) D. Yamashita, Y. Murata, N. Hikage, K. Takao, A. Nakazaki,
S. Kobayashi, Angew. Chem. 2008, 120, 1422; Angew. Chem. Int. Ed. 2008,
47, 1403–1406.
[5] R. M. Villar, J. Gil-Longo, A. H. Daranas, M. L. Souto, J. J. Fernández, S.
Peixinho, M. A. Barral, G. Santafé, J. Rodríguez, C. Jiménez, Bioorg. Med.
Chem. 2003, 11, 2301–2306.
[6] a) N. Sugano, Y. Koizumi, G. Hirai, H. Oguri, S. Kobayashi, S. Yamashita,
M. Hirama, Chem. Asian J. 2008, 3, 1549–1557; b) S. Yamashita, N. Suda,
Y. Hayashi, M. Hirama, Tetrahedron Lett. 2013, 54, 1389–1391.
[7] a) D. C. Behenna, J. L. Stockdill, B. M. Stoltz, Angew. Chem. Int. Ed. 2007,
46, 4077–4079; Angew. Chem. 2007, 119, 4155; b) J. L. Stockdill, D. C.
Behenna, B. M. Stoltz, Tetrahedron Lett. 2009, 50, 3182–3184; c) J. L.
Stockdill, D. C. Behenna, A. McClory, B. M. Stoltz, Tetrahedron 2009, 65,
6571–6575.
[8] For an alternative approach to a related fragment, see: a) H. Inoue, D.
Hidaka, S. Fukuzawa, K. Tachibana, Bioorg. Med. Chem. Lett. 2014, 24,
508–509; b) H. Inoue, K. Tokita, S. Fukuzawa, K. Tachibana, Bioorg. Med.
Chem. 2014, 22, 3455–3464.
Scheme 7. Functionalization of a model ketone with caprolactam 6.
Eur. J. Org. Chem. 2016, 2101–2104
2103
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim