1110
T.S. Lobana et al. / Polyhedron 28 (2009) 1103–1110
atom (–N2HterꢀꢀꢀCl, 2.38 Å; –N2HbriꢀꢀꢀCl, 2.35 Å) in complex 3. Two
dimeric units are interconnected via the imino hydrogen of a ter-
minal ligand of one unit and the sulfur atom of a bridging ligand
of the second unit (–N2HterꢀꢀꢀSbri, 2.71 Å), which forms a linear
References
[1] D.X. West, S.B. Padhye, P.B. Sonaware, Struct. Bond. (Berlin) 76 (1991) 4.
[2] D.X. West, A.E. Liberta, S.B. Padhye, R.C. Chilate, P.B. Sonaware, A.S. Kumbhar,
R.G. Yerande, Coord. Chem. Rev. 123 (1993) 49.
[3] D.X. West, J.S. Ives, J. Krejci, M.M. Salberg, T.L. Zumbahlen, G.A. Bain, A.E.
Liberta, J. Valdes-Martinez, S. Hernadez-Ortiz, R.A. Toscano, Polyhedron 14
(1995) 2189.
chain polymer (Fig. 6). The lack of Ph3P, which provides CH–
p
interactions, limits the dimensionality of 3 to 1D.
[4] M. Joseph, M. Kuriakose, M.R.P. Kurup, E. Suresh, A. Kishore, S.G. Bhat,
Polyhedron 25 (2006) 61.
4.5. Solution phase behaviour
[5] M.A. Ali, A.H. Mirza, A.M.S. Hossssian, M. Nazimuddin, Polyhedron 20 (2001)
1045.
[6] S. Lhuachan, S. Siripaisarnpipat, N. Chaichat, Eur. J. Inorg. Chem. (2003) 263.
[7] L.A. Ashfield, A.R. Cowley, J.R. Dilworth, P.S. Donnely, Inorg. Chem. 43 (2004)
4121.
[8] T.S. Lobana, Rekha, R.J. Butcher, Transition Met. Chem. 29 (2004) 291. and
references therein.
[9] T.S. Lobana, S. Khanna, R.J. Butcher, A.D. Hunter, M. Zeller, Polyhedron 25
(2006) 2755.
[10] T.S. Lobana, Rekha, R.J. Butcher, A. Castineiras, E. Bermejo, P.V. Bharatam,
Inorg. Chem. 45 (2006) 1535.
[11] T.S. Lobana, S. Khanna, R.J. Butcher, A.D. Hunter, M. Zeller, Inorg. Chem. 46
(2007) 5826.
[12] T.S. Lobana, S. Khanna, R.J. Butcher, Z. Anorg. Allg. Chem. 633 (2007) 1820.
[13] T.S. Lobana, Rekha, B.S. Sidhu, A. Castineiras, E. Bermejo, T. Nishioka, J. Coord.
Chem. 58 (2005) 803.
[14] T.S. Lobana, Rekha, A.P.S. Pannu, G. Hundal, R.J. Butcher, A. Castineiras,
Polyhedron 26 (2007) 2621.
[15] T.S. Lobana, S. Khanna, R. Sharma, G. Hundal, R. Sultana, M. Chaudhary, R.J.
Butcher, A. Castineiras, Cryst. Growth Design 8 (2008) 1203.
[16] T.S. Lobana, S. Khanna, G. Hundal, B.-J. Liaw, C.W. Liu, Polyhedron 27 (2008)
2251.
[17] T.S. Lobana, S. Khanna, A. Catineiras, Inorg. Chem. Commun. 10 (2007) 1307.
[18] K. Onodera, N.C. Kasuga, T. Takashima, A. Hara, A. Amano, H. Murakami, K.
Nomiya, J. Chem. Soc., Dalton Trans. (2007) 3646.
[19] I.G. Santos, A. Hagenbach, U. Abram, J. Chem. Soc., Dalton Trans. (2004) 677.
[20] A. Sreekanth, H.-K. Fun, M.R.P. Kurup, Inorg. Chem. Commun. 7 (2004) 1250.
[21] J.S. Casas, E.E. Catellano, M.D. Couce, J. Ellena, A. Sanchez, J. Sordo, C. Taboada,
J. Inorg. Biochem. 100 (2006) 1858.
The 1H NMR spectra of complexes 1–3 show shifts in the N2H
proton signal to low field (d 12.42, 11.60 and 11.68 ppm, respec-
tively) relative to the free ligand (d 9.15 ppm). The presence of
the N2H proton signals in these complexes ensures that no depro-
tonation occurred during complexation. The C2H proton signals
also appear shifted to low field: d 8.66 (1), 8.61 (2) and 8.56 ppm
(3) (free ligand, 7.93 ppm). The ring protons of Ph3P in complexes
1 and 2 appear in the range d7.32–7.51 ppm and appear to have ob-
scured the N1HMe proton signals. The methyl protons of –N1HCH3
appear as a doublet in the range, d 3.22–3.25 ppm in 1–3. The C5H
protons of the thiophene ring appeared as a doublet of doublets in
the range, d 7.07–7.1 ppm in these complexes, while the other ring
protons are obscured by proton signals for triphenyl phosphine in
complexes 1 and 2 and N1HMe proton signals (d 7.34–7.86 ppm) in
complex 3.
Complexes 1 and 2 showed 31P NMR bands at d 10.05 and
6.2 ppm, respectively. The coordination shifts, (
D
d = dcomplex
ꢁ
dligand) are 14.7 (1) and 10.9 ppm (2). These coordination shifts
are similar to those found in halogen-bridged dimers in silver(I)–
thiosemicarbazone chemistry [15].
[22] U. Abram, K. Ortner, R. Gust, K. Sommer, J. Chem. Soc., Dalton Trans. (2000)
735.
5. Conclusion
[23] K. Ortner, U. Abram, Inorg. Chem. Commun. 1 (1998) 251.
[24] F. Bigoli, E. Leporati, M.A. Pellinghetti, Cryst. Struct. Commun. 4 (1975) 127.
[25] S. Knapp, T.P. Keenean, J. Liu, J.A. Potonza, H.J. Schugar, Inorg. Chem. 29 (1990)
2189.
[26] A.A. Duorkin, Y.A. Simonov, L.I. Budarin, E.V. Fesento, V.N. Kalinin,
Kristallographie 35 (1990) 1460.
[27] D. Paekar, A.S. Craig, G. Ferguson, A.J. Lough, Polyhedron 8 (1989) 2951.
[28] A.J. Blake, G. Reid, M. Schroder, J. Chem. Soc., Dalton Trans. (1991) 615.
[29] J.L. Wang, M. Sin, F.M. Miao, S. Yu, F.S. Gong, X.H. Duan, Acta Crystallogr., Sect.
C 47 (1991) 2203.
[30] N.K. Mills, A.H. White, J. Chem. Soc., Dalton Trans. 229 (1985) 4.
[31] P.J. Reddy, V. Raichandran, K.K. Chacko, E. Weber, W. Saenger, Acta Crystallogr.,
Sect. C 45 (1989) 1871.
[32] C.E. Halloway, M. Melnik, W.A. Nevin, W. Liu, J. Coord. Chem. 35 (1995) 85.
[33] (a) P.J. Blower, J.A. Clarkson, S.C. Rawle, J.A.R. Hartmom, R.E. Wolf Jr., R.
Yagbasan, S.G. Bott, S.R. Cooper, Inorg. Chem. 28 (1989) 4040;
(b) P. Karagiannidis, P. Aslanidis, S. Kokkov, C.J. Cheer, Inorg. Chim. Acta 172
(1990) 247.
[34] (a) A.B. Corradi, G.G. Fava, M.B. Ferrari, M. Nardelli, Acta Crystallogr., Sect. C 43
(1987) 407;
(b) B. Norrin, A. Oskarsson, Acta Chem. Scand., Ser. A 39 (1985) 701.
[35] (a) M. Nardelli, G.G. Fava, G.G. Batlistini, A. Musatti, J. Chem. Soc., Chem.
Commun. (1965) 187;
For the mixed ligand complexes [AgX2(Htsc)2(Ph3P)2] it is inter-
esting to note that for R = H at N1HR of (C4H4S)CH@N–NH–C(@S)–
N1HR, a sulfur-bridged dimmer, 4, was formed [15], while for
R = Me at N1HR, halogen-bridged dimers 1 and 2 have been ob-
tained. It demonstrates the influence of methyl substituents at
the N1 nitrogen on the bonding properties of thiophene-2-carbal-
dehyde thiosemicarbazones, which would enhance the steric
crowding if the ligand were sulfur-bridged. In the absence of a
co-ligand, as in compound 3, the presence of four sulfur donor
atoms prefers S-bridging over chloride-bridging. This also en-
hances the argentophilicity, with a relatively short AgꢀꢀꢀAg contact
induced by the S-bridging. It is the first example of a complex of
the stoichiometry [Ag2Cl2(HttscMe)4] among thiosemicarbazone/
heterocyclic thioamide chemistry of coinage metals. Compounds
1–3 present the first report of complexes of N1-substituted thio-
semicarbazones with silver(I).
(b) M. Nardelli, G.G. Fava, I. Chierici, Ricierca Sci., Sect. A (1965) 480.
[36] C.E. Holloway, M. Melnik, W.A. Nevin, W. Liu, J. Coord. Chem. (Rev.) 35 (1995)
85.
[37] K. Nomiya, S. Takahashi, R. Noguchi, J. Chem. Soc., Dalton Trans. (2000) 2091.
[38] K. Nomiya, S. Takahashi, S.R. Noguchi, S. Nemoto, T. Takayama, M. Oda, Inorg.
Chem. 39 (2000) 3301.
Acknowledgement
Financial assistance from CSIR (Scheme No. 01(1993)/05/EMR-
II), New Delhi, is gratefully acknowledged.
[39] (a) K. Nomiya, K. Tsuda, T. Sudoh, M. Oda, J. Inorg. Biochem. 68 (1997) 39;
(b) W. Su, M. Hong, J. Weng, Y. Liang, Y. Zhao, R. Cao, Z. Zhou, A.S.C. Chan,
Inorg. Chim. Acta 331 (2002) 8.
Appendix A. Supplementary data
[40] (a) M. Munakata, L.-P. Wu, T. Kuroda-Sowa, Adv. Inorg. Chem. 46 (1999) 173;
(b) T.S. Lobana, R. Sharma, R.J. Butcher, Polyhedron 27 (2008) 1375.
[41] B. Liu, G.-W. Zhou, M.-L. Fu, L. Xu, G.-C. Guo, J.-S. Huang, Bull. Korean Chem.
Soc. 25 (2004) 1937.
CCDC 705112–705114 contains the supplementary crystallo-
graphic data for 1–3, respectively. These data can be obtained free
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: de-
posit@ccdc.cam.ac.uk. Supplementary data associated with this
article can be found, in the online version, at doi:10.1016/
[42] Bruker, SMART
, SAINT and XREP, Area Detector Control, and Data Integration and
Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison,
Wisconsin, USA, 1995.
[43] G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures,
University of Goettingen, Germany, 1997.
[44] J.E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principals of Structure
and Reactivity, 4th Ed., Harper Collins College Publishers, New York, 1993.