5870 J. Phys. Chem. A, Vol. 103, No. 30, 1999
Brodard et al.
(15) Beljonne, D.; O’Keefe, G. E.; Hamer, P. J.; Friend, R. H.; Anderson,
H. L.; Bredas, J. L. J. Chem. Phys. 1997, 106, 9439.
(16) Lin, V. S.-Y.; Therien, M. J. Chem. Eur. J. 1995, 1, 645.
(17) Arnold, D. P.; Heath, G. A. J. Am. Chem. Soc. 1993, 115, 12197.
(18) Kumble, R.; Palese, S.; Lin, V. S. Y.; Therien, M. J.; Hochstrasser,
R. M. J. Am. Chem. Soc. 1998, 120, 11489.
Conclusion
These investigations have shown that both the Coulombic
and the exchange interactions are operative in these porphyrin
arrays. Thus, both channels can be optimized to further enhance
the EET efficiency. The distance is a crucial parameter: the
present results show that a reduction of the TS distance should
strongly accelerate EET via the Fo¨rster mechanism. A shortening
of the TB distance should have a somewhat smaller effect on
the exchange interaction. This is due to the good conducting
property of the spacer, which actually acts as a wire. A better
wire could lead to a strong electronic interaction between the
chromophores via exciton coupling. The choice of the chro-
mophore is of course very crucial for an efficient antenna. An
important parameter is the excited state lifetime of the energy
donor. Although EET between two ZnTPP moieties is about 4
times faster than EET between two FbTPP, the EET efficiency
is higher in the second case, because of the longer excited
lifetime of FbTPP. For the same reason, chromophores like
NiTPP should absolutely be avoided.
(19) Scholes, G. D.; Ghiggino, K. P.; Oliver, A. M.; Paddon-Row, M.
N. J. Phys. Chem. 1993, 97, 11871.
(20) Kroon, J.; Oliver, A. M.; Paddon-Row, M. N.; Verhoeven, J. W.
J. Am. Chem. Soc. 1990, 112, 4868.
(21) Mongin, O.; Gossauer, A. Tetrahedron Lett. 1996, 37, 3825-3828.
(22) Mongin, O.; Gossauer, A. Tetrahedron 1997, 53, 6835-6846.
(23) Mongin, O.; Papamicae¨l, C.; Hoyler, N.; Gossauer, A. J. Org. Chem.
1998, 63, 5568.
(24) Hu¨bel, W. R. M. Angew. Chem. 1962, 74, 781.
(25) Vauthey, E.; Henseler, A. J. Phys. Chem. 1995, 99, 8652.
(26) Ho¨gemann, C.; Pauchard, M.; Vauthey, E. ReV. Sci. Instrum. 1996,
67, 3449.
(27) Gumy, J.-C.; Vauthey, E. J. Phys. Chem. 1996, 100, 8628.
(28) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J.
Am. Chem. Soc. 1985, 107, 3902.
(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montogomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Repogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzales, M. C.; Pople, J. A. Gaussian 94, Revision E2;
Gaussian, Inc.: Pittsburgh, 1995.
Acknowledgment. This work was supported by the Fonds
National Suisse de la Recherche Scientifique through Projects
20-49235.96, 21-49521.96, and 20-053568.98 and by the
programme d’encouragement a` la rele`ve universitaire de la
Confe´de´ration. Financial support from the Fonds de la recherche
and the Conseil de l’Universite´ de Fribourg is also acknowl-
edged. NMR spectra on the Bruker Avance DRX 500 instrument
were measured by F. Fehr and mass spectra by F. Nydegger
and I. Mu¨ller.
(30) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(31) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(32) Johnson, B. G.; Gill, P. M. W.; Pople, J. A. J. Chem. Phys. 1993,
98, 5612.
(33) Antipas, A.; Gouterman, M. J. Am. Chem. Soc. 1983, 105, 4896.
(34) Kim, D.; Kirmaier, C.; Holten, D. Chem. Phys. 1983, 75, 305.
(35) Davila, J.; Harriman, A.; Milgrom, L. R. Chem. Phys. Lett. 1987,
136, 427.
(36) Fayer, M. D. Ann. ReV. Phys. Chem. 1982, 33, 63.
(37) Eichler, H. J.; Gu¨nter, P.; Pohl, D. W. Laser-Induced Dynamic
Gratings; Springer Verlag: Berlin, 1986.
(38) Kogelnik, H. Bell. Syst. Tech. J. 1969, 48, 2909.
(39) Ho¨gemann, C.; Vauthey, E. Isr. J. Chem. 1998, 38, 181.
(40) Rodriguez, J.; Kirmaier, C.; Holten, D. J. Am. Chem. Soc. 1989,
111, 6500.
(41) Nishino, N.; Wagner, R. W.; Lindsey, J. S. J. Org. Chem. 1996,
61, 7534.
(42) Rodriguez, J.; Holten, D. J. Chem. Phys. 1989, 91, 3525.
(43) Eyring, G.; Fayer, M. D. J. Chem. Phys. 1984, 81, 4314.
(44) Fourkas, J. T.; Trebino, R.; Fayer, M. D. J. Chem. Phys. 1992, 97,
69.
Supporting Information Available: Synthesis and charac-
terization of all new compounds. Supporting Information is
References and Notes
(1) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26,
198.
(2) Wasielewski, M. R. Chem. ReV. 1992, 92, 435.
(3) Sundstro¨m, V.; vanGrondelle, R.; denHollander, W. T. F. Biochim.
Biophys. Acta 1986, 851, 431.
(4) Schatz, G. H.; Brock, H.; Holtzwarth, A. R. Proc. Natl. Acad. Sci.
U.S.A. 1987, 84, 8414.
(5) Du, M.; Xie, X.; Jia, Y.; Mets, L.; Fleming, G. R. Chem. Phys.
Lett. 1993, 201, 535.
(45) Myers, A. B.; Hochstrasser, R. M. IEEE J. Quantum Electron. 1986,
QE-22, 1482.
(46) Wynne, K.; Hochstrasser, R. M. Chem. Phys. 1993, 171, 179.
(47) Schlabach, M.; Wehrle, B.; Rumpel, H.; Braun, J.; Scherer, G.;
Limbach, H. H. Ber. Bunsen-Ges. Phys. Chem. 1992, 96, 821.
(48) Borisevich, E. A.; Egorova, G. D.; Knyukshto, V. N.; Solovev, K.
N. Opt. Spectrosc. 1986, 60, 454.
(49) Brodard, P.; Vauthey, E. Chem. Phys. Lett. In print.
(50) Fo¨rster, T. Discuss. Faraday Soc. 1959, 27, 7.
(51) Quimby, D. J.; Longo, F. R. J. Am. Chem. Soc. 1975, 97, 5111.
(52) Seybold, P. G.; Gouterman, M. J. Mol. Spectrosc. 1969, 31, 1.
(53) Dexter, D. L. J. Chem. Phys. 1953, 21, 836.
(54) Chang, J. C. J. Chem. Phys. 1977, 67, 3901.
(55) VanPatten, P. G.; Shreve, A. P.; Lindsey, J. S.; Donohoe, R. J. J.
Phys. Chem. B 1998, 102, 4209.
(56) Closs, G. L.; Piotrowak, D.; MacInnis, J.; Fleming, G. R. J. Am.
Chem. Soc. 1988, 110, 2652.
(6) vanGrondelle, R.; Dekker, J. P.; Gillbro, T.; Sundstro¨m, V. Biochim.
Biophys. Acta 1994, 1187, 1.
(7) Tabushi, I.; Sasaki, T. Tet. Lett. 1982, 23, 1913.
(8) Nagata, T. Bull. Chem. Soc. Jpn. 1991, 64, 3005.
(9) Gust, D.; Moore, T. A.; Moore, A. L.; Gao, F.; Luttrull, D.;
DeGraziano, J. M.; Ma, X. C.; Makings, L. R.; Lee, S.-J.; Trier, T. T.;
Bittersmann, E.; Seely, G. R.; Woodward, S.; Bensasson, R. V.; Rouge´e,
M.; DeSchryver, F. C.; VanderAuweraer, M. J. Am. Chem. Soc. 1991, 113,
3638.
(10) Prathapan, S.; Johnson, T. E.; Lindsey, J. S. J. Am. Chem. Soc.
1993, 115, 7519.
(11) Hsiao, J. S.; Krueger, B. P.; Wagner, R. W.; Johnson, T. E.;
Delaney, J. K.; Mauzerall, D. C.; Fleming, G. R.; Lindsey, J. S.; Bocian,
D. F.; Donohoe, R. J. J. Am. Chem. Soc. 1996, 118, 11181.
(12) Overfield, R. E.; Scherz, A.; Kaufmann, K. J.; Wasielewski, M. R.
J. Am. Chem. Soc. 1983, 1983, 4256.
(57) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.
(58) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996,
100, 13148.
(13) Mialocq, J. C.; Giannotti, C.; Maillard, P.; Momenteau, M. Chem.
Phys. Lett. 1984, 112, 87.
(14) Brookfield, R. L.; Ellul, H.; Harriman, A.; Porter, G. J. Chem. Soc.,
Faraday Trans. 2 1986, 82, 219.
(59) Ratner, M. A.; Jortner, J. In Molecular Electronics; Ratner, M. A.,
Jortner, J., Eds.; Blackwell Science, Inc.: Oxford, 1997; pp 5.