Organic Letters
Letter
Lett. 1995, 36, 6751. (c) Villar, A.; Hoevelmann, C. H.; Nieger, M.;
Muniz, K. Chem. Commun. 2005, 26, 3304. (d) Muniz, K.; Hovelmann,
C. H.; Villar, A. A.; Vicente, R.; Streuff, J.; Nieger, M. J. Mol. Catal. A:
Chem. 2006, 251, 277.
Scheme 7. Course of the Reaction in Ketoamide Formation
(4) (a) Reddi, R. N.; Prasad, P. K.; Sudalai, A. Org. Lett. 2014, 16, 5674.
(b) Reddi, R. N.; Malekar, P. V.; Sudalai, A. Org. Biomol. Chem. 2013, 11,
6477.
(5) (a) Meltzer, P. C.; Butler, D.; Deschamps, J. R.; Madras, B. K. J.
Med. Chem. 2006, 49, 1420. (b) Carroll, F. I.; Blough, B. E.; Abraham, P.;
Mills, A. C.; Holleman, J. A.; Wolckenhauer, S. A.; Decker, A. M.;
Landavazo, A. K.; McElroy, T.; Navarro, H. A.; Gatch, M. B.; Forster, M.
J. J. Med. Chem. 2009, 52, 6768. (c) Bouteiller, C.; Becerril-Ortega, J.;
Marchand, P.; Nicole, O.; Barre, L.; Buisson, A.; Perrio, C. Org. Biomol.
Chem. 2010, 8, 1111. (d) Myers, M. C.; Wang, J.-L.; Iera, J. A.; Bang, J.-
K.; Hara, T.; Saito, S.; Zambetti, G. P.; Appella, D. H. J. Am. Chem. Soc.
2005, 127, 6152.
(6) (a) McDonald, S. L.; Wang, Q. Chem. Commun. 2014, 50, 2535.
(b) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
2012, 51, 11827. (c) Miura, T.; Morimoto, M.; Murakami, M. Org. Lett.
2012, 14, 5214. (d) Takeda, T.; Terada, M. J. Am. Chem. Soc. 2013, 135,
15306. (e) Terada, M.; Nakano, M.; Ube, H. J. Am. Chem. Soc. 2006, 128,
16044. (f) Maji, B.; Yamamoto, H. Angew. Chem., Int. Ed. 2014, 53, 8714.
(g) Kano, T.; Shirozu, F.; Maruoka, K. Org. Lett. 2014, 16, 1530. (h) Xu,
C.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2014, 53, 4149. (i) Cecere,
intermediate in the reaction, it was then treated with piperidine in
anhydrous DMSO, which gave diketoamide 2t in 84% yield.18a
(ii) Furthermore, in the absence of piperidine in the reaction
medium, phenacyl bromide in DMSO gave the corresponding
phenylglyoxal (13) in 32% yield.18b,c The formed phenylglyoxal,
when treated with piperidine in DMSO, afforded the α-
ketoamide 2t in 82% yield. It is thus believed that the reaction
proceeds through intermediate phenacyl bromide and phenyl-
glyoxal.
To summarize, we have developed, for the first time, highly
regioselective oxo-aminations of alkenes and enol ethers to afford
α-amino carbonyl compounds in high yields; also, a “one-pot”
process for the synthesis of vicinal amino alcohol derivatives has
also been demonstrated. Additionally, oxidative coupling of
alkenes and secondary amines for the synthesis of α-ketoamides
has been reported. More importantly, the (bromooxy)-
dimethylsulfonium ion (I) as a reactive species, generated from
an inexpensive NBS−DMSO−DBU oxidative system, has been
identified for this oxo-amination reaction. We believe that this
operationally simple and mild protocol would serve as a
prominent method and find tremendous applications in the
synthesis of widely occurring natural products.
G.; Konig, C. M.; Alleva, J. L.; MacMillan, D. W. C. J. Am. Chem. Soc.
̈
2013, 135, 11521. (j) Wang, S.-G.; Yin, Q.; Zhuo, C.-X.; You, S.-L.
Angew. Chem., Int. Ed. 2015, 54, 647. (k) Nan, J.; Liu, J.; Zheng, H.; Zuo,
Z.; Hou, L.; Hu, H.; Wang, Y.; Luan, X. Angew. Chem., Int. Ed. 2015, 54,
2356. (l) Yang, X.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3205.
(7) (a) Hill, J.; Zakaria, M.; Mumford, D. J. Chem. Soc., Perkin Trans. 1
1983, 2455. (b) Yadav, J. S.; Subba Reddy, B. V.; Srinivas, M. Chem. Lett.
2004, 33, 882.
(8) (a) Evans, R. E.; Zbieg, J. R.; Zhu, S.; Li, W.; Macmillan, D. W. C. J.
Am. Chem. Soc. 2013, 135, 16074. (b) Jiang, Q.; Xu, B.; Zhao, A.; Jia, J.;
Liu, T.; Guo, C. J. Org. Chem. 2014, 79, 8750. (c) Lamani, M.; Prabhu, K.
R. Chem. - Eur. J. 2012, 18, 14638. (d) Jing, Y.; Daniliuc, C. G.; Studer, A.
Org. Lett. 2014, 16, 4932. (e) Zhang, X.; Wang, L. Green Chem. 2012, 14,
2141.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, product characterization, and
copies of NMR spectra for 2a−w, 4−13 (PDF)
(9) Ashikari, Y.; Shimizu, A.; Nokami, T.; Yoshida, J.-I. J. Am. Chem.
Soc. 2013, 135, 16070.
(10) (a) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.;
Horaguchi, T. Chem. Lett. 2003, 32, 932. (b) Andersh, B.; Murphy, D. L.;
Olson, R. J. Synth. Commun. 2000, 30, 2091.
(11) (a) Djerassi, C. Chem. Rev. 1948, 43, 271. (b) Horner, L.;
Winkelmann, E. H. Angew. Chem. 1959, 71, 349. (c) Futamura, S.; Zong,
Z.-M. Bull. Chem. Soc. Jpn. 1992, 65, 345. (d) Greenwood, F. L.; Kellert,
M. D.; Sedlak, J. 4-Bromo-2-heptene. J. Org. Synth., Coll. 1963, 4, 108.
(12) (a) Wei, Y.; Lin, S.; Liang, F. Org. Lett. 2012, 14, 4202. (b) Wei, Y.;
Lin, S.; Liang, F.; Zhang, J. Org. Lett. 2013, 15, 852. (c) Wei, Y.; Liang, F.;
Zhang, X. Org. Lett. 2013, 15, 5186.
(13) Wolfe, S.; Pilgrim, W. R.; Garrard, T. F.; Chamberlain, P. Can. J.
Chem. 1971, 49, 1099.
(14) Majetich, G.; Shimkus, J.; Li, Y. Tetrahedron Lett. 2010, 51, 6830.
(15) Reddi, R. N.; Prasad, P. K.; Sudalai, A. Angew. Chem., Int. Ed. 2015,
54, 14150.
(16) O’Brien, J. F. J. Phys. Chem. 1995, 99, 12759.
(17) Floyd, M. B.; Du, M. T.; Fabio, P. F.; Jacob, L. A.; Johnson, B. D. J.
Org. Chem. 1985, 50, 5022.
(18) (a) Deshidi, R.; Devari, S.; Shah, B. A. Eur. J. Org. Chem. 2015,
2015, 1428. (b) Dutta, S.; Kotha, S. S.; Sekar, G. RSC Adv. 2015, 5,
47265. (c) Andresen, B. D.; Biemann, K. J. Labelled Compd. Radiopharm.
1978, 15, 479.
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
‡P.K.P. and R.N.R. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
P.K.P. and R.N.R. thank CSIR, New Delhi for the award of
research fellowships and thank CSIR, New Delhi and DST-SERB
(No. SB/S1/OC-42/2014) for financial support. The authors
are also thankful to Dr. V. V. Ranade, Chair, Chem. Engg. &
Process Develop. for his constant encouragement.
REFERENCES
■
(1) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
(b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
(2) (a) Moorthy, J. N.; Senapati, K.; Singhal, N. Tetrahedron Lett. 2009,
50, 2493. (b) Patil, R. D.; Joshi, G.; Adimurthy, S.; Ranu, B. C.
Tetrahedron Lett. 2009, 50, 2529. (c) Nobuta, T.; Hirashima, S.; Tada,
N.; Miura, T.; Itoh, A. Synlett 2010, 2010, 2335.
(3) Murahashi, S.; Saito, T.; Hanaoka, H.; Murakami, Y.; Naota, T.;
Kumobayashi, H.; Akutagawa, S. J. Org. Chem. 1993, 58, 2929.
(b) Venkatramreddy, M.; Kumareswaran, R.; Vankar, Y. D. Tetrahedron
D
Org. Lett. XXXX, XXX, XXX−XXX