J. Am. Chem. Soc. 1999, 121, 7961-7962
7961
Rigid Push-Pull Oligo(p-Phenylene) Rods:
Depolarization of Bilayer Membranes with Negative
Membrane Potential
Jean-Yves Winum and Stefan Matile*,†
Department of Chemistry, Georgetown UniVersity
Washington, D.C. 20057
ReceiVed April 12, 1999
In light of steadily emerging multi-drug-resistant bacteria,1 the
molecular mechanism of natural antibiotics is of high interest for
the development of new routes toward antimicrobials that can be
hoped to cause minimal microbial resistance.2 Many natural
antibiotics are cationic, R-helical peptides that presumably act
by recognizing and depolarizing anionic, highly polarized bacterial
cell membranes.2 The alignment of their dipole moment with
negative membrane potentials in particular has been proposed to
be critical for their specificity.2,3 To study this central aspect of
the molecular recognition mechanism of natural antibiotics, one
would need the development of novel functional biomimetics3,4
with permanently oriented dipole moments that can be systemati-
cally Varied in magnitude without significant modification of the
global structure of the synthetic model. As an example of the
usefulness of rigid-rod molecules to address bioorganic topics of
current concern,5 we here report the design, synthesis, and
evaluation of push-pull rigid-rod ionophore 1 that is, in clear
contrast to octi(p-phenylene) 2 with nearly identical structure but
Figure 1. Structure of push-pull (1) and pull-pull (2) rigid-rod
ionophores; f, permanently fixed dipole moments; O, 18-azacrown-6.
The rigid-rod molecules 1 and 2 are composed of three subunits.
Octi(p-phenylene) scaffolds were selected because they adapt
transmembrane orientation in hydrophobically matching bilayer
membranes (Figure 1).5b,c,f,g The terminal cyano and methoxy
groups were chosen as π acceptors (µ ≈ 3.9 D) and donors (µ ≈
1.3 D),6 respectively, to control magnitude and orientation of the
permanently fixed dipole moments in 1 and 2. 18-Azacrown-6
was placed as a lateral side chain because its capacity as ion-
transporting “relays” is well established.4
Scheme 1a
without permanently fixed dipole moment, capable of depolarizing
bilayer membranes with negative membrane potential (Figure 1).
† Present address: Department of Organic Chemistry, University of Geneva,
CH-1211 Geneva 4, Switzerland.
(1) (a) Niccolai, D.; Tarsi, L.; Thomas, R. Chem. Commun. 1997, 2333.
(b) Travis, J. Science 1994, 264, 360, references therein and in this Science
issue.
(2) (a) Bechinger, B. J. Membr. Biol. 1997, 156, 197. (b) Wieprecht, T.;
Dathe, M.; Beyermann, M.; Krause, E.; Maloy, W. L.; MacDonald, D. L.;
Bienert, M. Biochemistry 1997, 36, 6124. (c) Gabay, J. E. Science 1994, 264,
373. (d) Saberwal, G.; Nagaraj, R. Biochim. Biophys. Acta 1994, 1197, 109.
(3) Pertinent recent examples of voltage-dependent peptide ion channels
and channel models: (a) Woolley, G. A.; Zunic, V.; Karanicolas, J.; Jaikaran,
A. S. I.; Starostin, A. V. Biophys. J. 1997, 73, 2465. (b) Lear, J. D.; Schneider,
J. P.; Kienker, P. K.; DeGrado, W. F. J. Am. Chem. Soc. 1997, 119, 3212. (c)
Juvvadi, P.; Vunnam, S.; Merrifield, R. B. J. Am. Chem. Soc. 1996, 118, 8989.
(d) Oiki, S.; Koeppe, R. E., II; Andersen, O. S. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 2121.
(4) Reviews on nonpeptide ion channels and channel models: (a) Gokel,
G. W.; Murillo, O. Acc. Chem. Res. 1996, 29, 425. (b) Fyles, T. M.; van
Straaten-Nijenhuis, W. F. In ComprehensiVe Supramolecular Chemistry;
Reinhouldt, N. D., Ed.; Elsevier: Oxford, U.K., 1996; Vol. 10, p 53. (c) Voyer,
N. Top. Curr. Chem. 1996, 184, 1. Some recent references: (d) Li, C.; Budge,
L. P.; Driscoll, C. D.; Willardson, B. M.; Allman, G. W.; Savage, P. B. J.
Am. Chem. Soc. 1999, 121, 931. (e) Fritz, M. G.; Walde, P.; Seebach, D.
Macromolecules 1999, 32, 574. (f) Merritt, M.; Lanier, M.; Deng, G.; Regen,
S. L. J. Am. Chem. Soc. 1998, 120, 8494. (g) de Mendoza, J.; Cuevas, F.;
Prados, P.; Meadows, E. S.; Gokel, G. W. Angew. Chem., Int. Ed. Engl. 1998,
37, 1534. (h) Fyles, T. M.; Loock, D.; Zhou, X. J. Am. Chem. Soc. 1998,
120, 2997. (i) Meillon, J.-C.; Voyer, N. Angew. Chem., Int. Ed. Engl. 1997,
36, 967. (j) Pechulis, A. D.; Thompson, R. J.; Fojtik, J. P.; Schwartz, H. M.;
Lisek, C. A.; Frye, L. L. Bioorg. Med. Chem. 1997, 5, 1893. (k) Wagner, H.;
Harms, K.; Koert, U.; Meder, S.; Boheim, G. Angew. Chem., Int. Ed. Engl.
1996, 35, 2643.
a (a) Pd(PPh3)4, Na2CO3, 10%; (b) BBr3; (c) tert-butyl bromoacetate,
Cs2CO3, 46% from 5; (d) p-methoxyphenylboronic acid, Pd(PPh3)4,
Na2CO3, 40% (conversion yield, 54%; dimethoxy octamer, 26%); (e)
p-cyanophenylboronic acid, Pd(PPh3)4, Na2CO3, 34%; (f) TFA/CH2Cl2;
(g) 18-azacrown-6, PyBOP, DIPEA, 57% from 9; (h) see (e) 35%
(conversion yield: 50%); (i) BBr3; (j) see (c), 42% from 6; (k) TFA/
CH2Cl2; (l) see (g), 42% from 13.7
The synthesis of 1 and 2 was more difficult than expected
(Scheme 1). In contrast to that of shorter oligo(p-phenylene)s,5h
(5) (a) Sakai, N.; Majumdar, N.; Matile, S. J. Am. Chem. Soc. 1999, 121,
4294. (b) Ghebremariam, B.; Sidorov, V.; Matile, S. Tetrahedron Lett. 1999,
40, 1445. (c) Tedesco, M. M.; Ghebremariam, B.; Sakai, N.; Matile, S. Angew.
Chem., Int Ed. Engl. 1999, 38, 540. (d) Sakai, N.; Ni, C.; Bezrukov, S. M.;
Matile, S. Bioorg. Med. Chem. Lett. 1998, 8, 2743. (e) Ghebremariam, B.;
Matile, S. Tetrahedron Lett. 1998, 39, 5335. (f) Ni, C.; Matile, S. Chem.
Commun. 1998, 755. (g) Weiss, L. A.; Sakai, N.; Ghebremariam, B.; Ni, C.;
Matile, S. J. Am. Chem. Soc. 1997, 119, 12142. (h) Sakai, N.; Brennan, K.
C.; Weiss, L. A.; Matile, S. J. Am. Chem. Soc. 1997, 119, 8726. (i)
Ghebremariam, B.; Matile, S. Enantiomer 1999, 4, 127 and 139.
10.1021/ja991133r CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/13/1999