Synthesis of Base-Sensitive SATE-Prooligonucleotides
J . Org. Chem., Vol. 64, No. 17, 1999 6325
(CD3CN) δ 8.44 (s, 1 H, NH), 8.27 (d, J ) 7.52 Hz, 1 H, H-6),
7.97 (dd, J ortho ) 8.04 Hz, J meta ) 1.06 Hz, 2 H, H ortho to NO2
of diNPEOC), 7.69-7.51 (m, 6 H, H meta and para to NO2 of
diNPEOC), 7.08 (d, J ) 7.50 Hz, 1 H, H-5), 6.10 (m, 1 H, H-1′),
5.55 (t, J ) 6.17 Hz, 1 H, CO2CH2CH), 4.90 (d, J ) 6.14 Hz, 2
H, CO2CH2CH), 4.30 (m, 1 H, H-3′), 3.96 (m, 1 H, H-4′), 3.70
(m, 2 H, H-5′, H-5′′), 3.40 (d, 1 H, OH-3′), 3.26 (t, 1 H, OH-5′),
2.39 and 2.14 (2 m, 2 H, H-2′, H-2′′); FABMS (positive mode)
m/z 542 (MH)+, 426 (4-N-diNPEOC-Cyt + H)+; HRMS calcd
for C24H24N5O10 542.1523, found 542.1520; FABMS (negative
mode) m/z 540 (M - H)-, 226 (M - diNPEOC)- ) (dC - H)-.
(MH)+, 780 (2-N-bis-diNPEOC-Gua + H)+; 582 (2-N-diNPEOC-
dG + H)+, 466 (2-N-diNPEOC-Gua + H)+; HRMS calcd for
C
40H34N9O16 896.2124, found 896.2155; FABMS (negative
mode) m/z 894 (M - H)-, 778 (2-N-bis-diNPEOC-Gua - H)-,
580 (2-N-diNPEOC-dG - H)-, 464 (2-N-diNPEOC-Gua - H)-.
5′,3′-Bis(O-ter t-b u t yld im et h ylsilyl)-6-N-(6-n it r over a -
tr yloxyca r bon yl)-2′-d eoxya d en osin e (6). A THF solution
of 6-nitroveratryloxycarbonyltetrazolide was prepared by add-
ing NVOC-Cl (500 mg, 1.81 mmol) to a mixture of 1H-
tetrazole (113, 1.6 mmol) and Et3N (242 µL, 1.73 mmol) in
anhydrous THF (20 mL) at 0 °C. The resulting mixture was
stirred at 0 °C for 10 min and then at room temperature for
30 min. The precipitate was filtered off through a pad of Celite
and washed with THF. The THF solution of NVOC-tetrazole
was concentrated and added to 5′,3′-bis(O-tert-butyldimethyl-
silyl)-2′-deoxyadenosine (5) (385 mg, 0.8 mmol) in anhydrous
THF (15 mL). The resulting mixture was heated to 70 °C for
3 h and then kept at room temperature overnight. After
concentration under reduced pressure, the oil residue was
diluted with ethyl acetate (100 mL) and washed with saturated
aqueous NaHCO3 (80 mL) and then with brine (80 mL). The
organic layer was dried (Na2SO4) and then evaporated to
dryness. The residue was purified by flash column chroma-
tography (silica gel, gradient 70/30 to 100/0, v/v, of CH2Cl2/
cyclohexane), and the appropriate fractions were combined and
evaporated to dryness. The resulting foam was dissolved in
dioxane and lyophilized to afford 6 (362 mg, 63%): 1H NMR
(CDCl3) δ 8.77 (s, 1 H, H-8), 8.36 (s, 1 H, H-2), 7.76 (s, 1 H, H
ortho to NO2 of NVOC), 7.27 (s, 1 H, H meta to NO2 of NVOC),
6.52 (m, 1 H, H-1′), 5.75 (s, 2 H, CO2CH2), 4.63 (m, 1 H, H-3′),
4.06 (m, 1 H, H-4′), 4.02 and 3.99 (2 s, 6H, 2 OCH3), 3.99-
3.76 (m, 2 H, H-5′, H-5′′), 2.66 and 2.50 (2 m, 2 H, H-2′, H-2′′),
0.93 (m, 18 H, 2 C(CH3)3), 0.12 (m, 12H, 2 Si(CH3)2); FABMS
(positive mode) m/z 719 (MH)+; HRMS calcd for C32H51N6O9-
Si2 719.3252, found 719.3346; FABMS (negative mode) m/z 717
(M - H)-.
5′,3′-Bis(O-ter t-b u t yld im et h ylsilyl)-6-N-(2,2′-b is(2-n i-
tr oph en yl)eth yloxyca r bon yl)-2′-d eoxya d en osin e (9). 5′,3′-
Bis(O-tert-butyldimethylsilyl)-2′-deoxyadenosine (5) (1.7 g, 3.5
mmol) was treated with the same protocol as for the prepara-
tion of 6, except 2,2′-bis(2-nitrophenyl)ethyloxycarbonyl-
tetrazolide prepared as above from diNPEOC-chloride (1.6
g, 4.56 mmol) replaced 6-nitroveratryloxycarbonyltetrazolide.
Compound 9 was in with 90% yield (2.51 g): 1H NMR (CDCl3)
δ 8.75 (s, 1 H, H-8), 8.40 (sl, 1 H, NH), 8.30 (s, 1 H, H-2), 8.00
(dd, J ortho ) 8.06 Hz, J meta ) 1.22 Hz, 2 H, H ortho to NO2 of
diNPEOC), 7.60-7.42 (m, 6 H, H meta and para to NO2 of
diNPEOC), 6.50 (m, 1 H, H-1′), 5.81 (t, J ) 6.81 Hz, 1 H, CO2-
CH2CH), 4.99 (d, J ) 6.84 Hz, 2 H, CO2CH2CH), 4.62 (m, 1 H,
H-3′), 4.04 (m, 1 H, H-4′), 3.94-3.75 (m, 2 H, H-5′, H-5′′), 2.63
and 2.51 (2 m, 2 H, H-2′, H-2′′), 0.93 (m, 18 H, 2 C(CH3)3),
0.12 (m, 12H, 2 Si(CH3)2); FABMS (positive mode) m/z 794
(MH)+; HRMS calcd for C37H52N7O9Si2 794.3365, found
794.3455; FABMS (negative mode) m/z 792 (M - H)-, 478
(M - diNPEOC - H)-.
6-N-(2,2′-Bis(2-n itr oph en yl)eth yloxycar bon yl)-2′-deoxy-
a d en osin e (10) a n d 6-N-Bis(2,2′-bis(2-n itr op h en yl)eth yl-
oxyca r bon yl)-2′-d eoxya d en osin e (12). 2′-Deoxyadenosine
(200 mg, 0.79 mmol) was treated as 2′-deoxycytidine for the
preparation of 3. After purification by flash column chroma-
tography (silica gel, gradient 0-5% MeOH/CH2Cl2), the ap-
propriate fractions were combined and evaporated to dryness.
The resulting foams were dissolved in dioxane and lyophilized
to afford 10 (192 mg, 43%) and 12 (173 mg, 25%) as colorless
powders. Compound 10: 1H NMR (CD3CN) δ 8.90 (s, 1 H, NH),
8.57 (s, 1 H, H-8), 8.25 (s, 1 H, H-2), 7.93 (dd, J ortho ) 8.11 Hz,
J meta ) 1.07 Hz, 2 H, H ortho to NO2 of diNPEOC), 7.66-7.57
(m, 6 H, H meta and para to NO2 of diNPEOC), 6.40 (m, 1 H,
H-1′), 5.60 (t, J ) 6.32 Hz, 1 H, CO2CH2CH), 4.95 (d, J ) 6.25
Hz, 2 H, CO2CH2CH), 4.56 (m, 2 H, H-3′, OH-3′), 4.04 (m, 1
H, H-4′), 3.74 (m, 2 H, H-5′, H-5′′), 3.47 (m, 1 H, OH-5′), 2.79
and 2.39 (2 m, 2 H, H-2′, H-2′′); FABMS (positive mode) m/z
566 (MH)+, 450 (6-N-diNPEOC-Ade + H)+; HRMS calcd for
C25H24N7O9 566.1636, found 566.1611; FABMS (negative mode)
m/z 564 (M - H)-, 448 (6-N-diNPEOC-Ade - H)-. Compound
12: 1H NMR (CD3CN) δ, 8.52 (s, 1 H, H-8), 8.13 (s, 1 H, H-2),
7.88 (m, 4 H, H ortho to NO2 of diNPEOC), 7.49-7.22 (m, 12
H, H meta and para to NO2 of diNPEOC), 6.42 (m, 1 H, H-1′),
5.47 (t, 2 H, 2 CO2CH2CH), 5.05-4.85 (m, 6 H, 2 CO2CH2CH,
H-3′, OH-5′), 4.29 (m, 1 H, H-4′), 3.96 (m, 2 H, H-5′, H-5′′),
2.99 and 2.37 (2 m, 2 H, H-2′, H-2′′); FABMS (positive mode)
m/z 880 (MH)+, 764 (6-N-bis-diNPEOC-Ade + H)+, 566 (6-N-
diNPEOC-dA + H)+, 450 (6-N-diNPEOC-Ade + H)+; HRMS
calcd for C40H34N9O15 880.2174, found 880.2140; FABMS
(negative mode) m/z 878 (M - H)-, 762 (6-N-bis-diNPEOC-
Ade - H)-, 564 (6-N-diNPEOC-dA - H)-, 448 (6-N-diNPEOC-
Ade - H)-.
2-N-(2,2′-Bis(2-n it r op h en yl)et h yloxyca r b on yl)-2′-d e-
oxygu a n osin e (13) a n d 2-N-Bis(2,2′-bis(2-n itr op h en yl)-
eth yloxyca r bon yl)-2′-d eoxygu a n osin e (14). The procedure
applied to 2′-deoxyadenosine in the preparation of 10 and 12
was modified for 2′-deoxyguanosine (342 mg, 1.28 mmol). After
standing overnight with diNPEOC-Cl (583 mg, 1.66 mmol),
the mixture was treated for 15 min with 10% aqueous
ammonia (1.5 mL) at room temperature and then filtered. The
filtrate was evaporated, redissolved in CH2Cl2/MeOH (95/5,
v/v), and purified by flash column chromatography (silica gel,
gradient 5-10% MeOH/1% Et3N/CH2Cl2), and the appropriate
fractions were combined and evaporated to dryness. The
resulting foams were dissolved in dioxane and lyophilized to
afford 13 (103 mg, 14%) and 14 (209 mg, 18%) as colorless
powders. Compound 13: 1H NMR (DMSO-d6) δ 8.12 (s, 1 H,
H-8), 7.99 (dd, J ortho ) 7.71 Hz, J meta ) 0.97 Hz, 2 H, H ortho
to NO2 of diNPEOC), 7.76-7.53 (m, 6 H, H meta and para to
NO2 of diNPEOC), 6.15 (m, 1 H, H-1′), 5.40 (t, J ) 6.69 Hz, 1
H, CO2CH2CH), 5.31 (m, 1 H, OH-3′), 5.04 (m, 1 H, OH-5′),
4.86 (d, J ) 6.50 Hz, 2 H, CO2CH2CH), 4.35 (m, 1 H, H-3′),
3.82 (m, 1 H, H-4′), 3.57-3.47 (m, 2 H, H-5′, H-5′′), 2.21 (m, 2
H, H-2′, H-2′′); FABMS (positive mode) m/z 582 (MH)+, 466
(2-N-diNPEOC-Gua + H)+; HRMS calcd for C25H24N7O10
582.1585, found 582.1583; FABMS (negative mode) m/z 580
(M - H)-, 464 (2-N-diNPEOC-Gua - H)-. Compound 14: 1H
NMR (DMSO-d6) δ 8.21 (s, 1 H, H-8), 7.90 (m, 4 H, H ortho to
NO2 of diNPEOC), 7.46-7.18 (m, 12 H, H meta and para to
NO2 of diNPEOC), 6.08 (m, 1 H, H-1′), 5.33 (m, 3 H, 2 CO2-
CH2CH, OH-5′), 4.86 (m, 5H, 2 CO2CH2CH, OH-3′), 4.23 (m, 1
H, H-3′), 3.86 (m, 1 H, H-4′), 3.55-3.42 (m, 2 H, H-5′, H-5′′),
2.09 (m, 2 H, H-2′, H-2′′); FABMS (positive mode) m/z 896
6-N-(6-Nit r over a t r yloxyca r bon yl)-2′-d eoxya d en osin e
(7). To a solution of 6 (362 mg, 0.5 mmol) in anhydrous THF
(15 mL) was added a 1 M solution of TBAF in THF (1.51 mL,
1.51 mmol), and the resulting mixture was stirred at room
temperature for 1.5 h. After evaporation, the residue was
purified by flash column chromatography (silica gel, gradient
0-10% MeOH/CH2Cl2), and the appropriate fractions were
combined and evaporated to dryness. The resulting foam was
dissolved in dioxane and lyophilized to afford 7 in quantitative
1
yield. H NMR (pyridine-d5) δ 9.15 (s, 1 H, H-8), 9.02 (s, 1 H,
H-2), 7.77 (s, 1 H, H ortho to NO2 of NVOC), 7.54 (s, 1 H, H
meta to NO2 of NVOC), 7.32 (d, 1 H, OH-3′), 6.97 (t, 1 H, OH-
5′), 6.77 (m, 1 H, H-1′), 6.01 (s, 2 H, CO2CH2), 5.19 (m, 1 H,
H-3′), 4.59 (m, 1 H, H-4′), 4.23-4.14 (m, 2 H, H-5′, H-5′′), 3.76
and 3.74 (2 s, 6H, 2 OCH3), 3.15 and 2.77 (2 m, 2 H, H-2′,
H-2′′); FABMS (positive mode) m/z 491 (MH)+; 252 (M -
NVOC + 2H)+ ) (dA + H)+; HRMS calcd for C20H23N6O9
491.1527, found 491.1572; FABMS (negative mode) m/z 489
(M - H)-, 250 (M - NVOC)- ) (dC - H)-.