5278 J. Am. Chem. Soc., Vol. 123, No. 22, 2001
D’Souza et al.
compounds is the free rotation and flexibility of the single
covalent bond which would give more than one conformer in
solution. This eventually is expected to modulate the electronic
interactions between the donor and acceptor entities, thus
affecting the electron transfer rates. In porphyrin-quinone
dyads, this problem has already been addressed by studying a
few rigidly linked porphyrin-quinone dyads.13
pyridine aldehyde according to a general procedure developed
by Maggini et al.14 for fulleropyrrolidine synthesis. The R-amino
acid appended porphyrin was synthesized by first preparing
5-(3′-hydroxyphenyl)-10,15,20-triphenylporphyrin, 1a, followed
by converting it to 5-(3′-bromoethoxyphenyl)-10,15,20-triphen-
ylporphyrin, 1b.15 The 5-(3′-ethoxyphenyl-amino acetic acid)-
10,15,20-triphenylporphyrin 1c was obtained by treating 1b with
glycine methyl ester in methyl ethyl ketone containing excess
potassium carbonate followed by hydrolysis of the ester in
aqueous NaOH containing a THF solution. Free-base porphy-
rin-fullerene dyads 1d and 2d were metalated with zinc
acetate16 to obtain the desired zinc porphyrin-fullerene con-
jugates 1 and 2. Generally, good yields of the reaction products
were obtained and the synthesized porphyrin-fullerene conju-
gates were found to be soluble in many organic solvents.
Electrochemical Studies. Cyclic voltammetric studies have
been performed to evaluate the redox potentials and also to
visualize any ground-state interactions between the porphyrin
and fullerene entities in the studied porphyrin-fullerene con-
jugates. Figure 1 shows the cyclic voltammograms of 1 and 2
in 0.1 M (TBA)ClO4, o-dichlorobenzene. Within the accessible
potential window of the solvent, a total of seven reversible redox
processes have been observed. The first and second redox
potentials corresponding to the oxidation of the zinc porphyrin
of 1 and 2 are virtually identical and are located at E1/2 ) 0.26
and 0.61 V vs Fc/Fc+, respectively. The reduction potentials of
the appended C60 moiety of 1 are located at E1/2 ) -1.20,
-1.55, and -2.07 V vs Fc/Fc+ and are not significantly different
from that of 2. Unlike the similarity between the oxidation
potentials of the zinc porphyrin moieties of 1 and 2, the
corresponding potentials for the porphyrin ring reduction reveal
small changes. That is, the potentials for the zinc porphyrin ring
reduction of 1 are located at E1/2 ) -1.97 and -2.36 V vs
Fc/Fc+, respectively, and are 20-40 mV negatively shifted
compared to the corresponding porphyrin ring reduction po-
tentials of 2. However, these potentials are not significantly
different from that earlier reported for tetraphenylporphyrina-
tozinc, ZnTPP, and fulleropyrrolidines.7a,17 These results col-
lectively suggest weak or no ground-state interactions between
the zinc porphyrin and C60 entities.
In the present study, we have developed a novel approach to
position the donor, zinc porphyrin, and acceptor, C60, entities
in defined spatial organization to probe the proximity effects.
For this, covalently linked porphyrin-C60 dyads capable of axial
coordination of the functionalized C60 entity via a “tail-on” and
“tail-off” binding mechanism to the central zinc ion are
developed (Scheme 1). The dyads, 2-(3′- or 4′-pyridyl)ful-
leropyrrolidine, covalently linked to one of the phenyl rings of
a tetraphenylporphyrinatozinc macrocycle through the pyrroli-
dine ring nitrogen have newly been designed and synthesized.
The donor-acceptor proximity on the efficiency of photoin-
duced electron transfer from the singlet excited zinc porphyrin
to C60 has been probed by controlling the axial coordination of
the pyridyl group attached at the 2-position of the pyrrolidine
ring of fulleropyrrolidine to the metal center of zinc porphyrin
by two mechanisms, viz., (i) temperature-dependent axial
coordination equilibrium and (ii) an intermolecular axial ligation
controlled equilibrium using 3-picoline as shown in Scheme 1.
Results and Discussion
Synthesis of Porphyrin-Fullerene Conjugates. The syn-
thetic procedure developed to probe the proximity effects in
zinc porphyrin-C60 dyads is shown in Scheme 2. This involves
first synthesizing a R-amino acid appended porphyrin followed
by condensing it with fullerene in the presence of a desired
(6) (a) Dietel, E.; Hirsh, A.; Eichhorn, E.; Rieker, A.; Hackbarth, S.;
Roder, B. Chem. Commun. 1998, 1981. (b) Gareis, T.; Kothe, O.; Daub, J.
Eur. J. Org. Chem. 1998, 1549. (c) Da Ros, T.; Prato, M.; Guldi, D.; Alessio,
E.; Ruzzi, M.; Pasimeni, L.; Carano, M.; Paolucci, F.; Ceroni, P.; Roffia,
S. In Recent AdVances in the Chemistry and Physcis of Fullerenes and
Related Materials; Kadish, K. M., Ruoff, R. S., Eds.; The Electrochemical
Proceedings Series, Pennington, NJ, 1998; p 1074. (d) Martin, N.; Sanchez,
L.; Illescas, B.; Perez, I. Chem. ReV. 1998, 98, 2527. (e) Gareis, T.; Kothe,
O.; Daub, J. Eur. J. Org. Chem. 1998, 1549. (f) Martin, N.; Sanchez, L.;
Illescas, B.; Perez, I. Chem. ReV. 1998, 98, 2527.
(7) (a) D’Souza, F.; Deviprasad, G. R.; Rahman, M. S.; Choi, J.-P. Inorg.
Chem. 1999, 38, 2157. (b) Armaroli, N.; Diederich, F.; Echegoyen, L.;
Habicher, T.; Flamigni, L.; Marconi, G.; Nierengarten,. J.-F. New. J. Chem.
1999, 77. (c) Da Ros, T.; Prato, M.; Guldi, D. M.; Alessio, E.; Ruzzi, M.;
Pasimeni, L. Chem. Commun. 1999, 635. (d) Tashiro, K.; Aida, T.; Zheng,
J.-Y.; Kinbara, K.; Saigo, K.; Sakamoti, S.; Yamaguchi, K. J. Am. Chem.
Soc. 1999, 121, 9477. (e) Tkachenko, N. V.; Rantala, L.; Tauber, A. Y.;
Helaja, J.; Hynninen, P. H.; Lemmetyinen, H. J. Am. Chem. Soc. 1999,
121, 9378.
Addition of 3-picoline to a solution of 1 or 2, that is, to
produce the “tail-off” form according to Scheme 1b while
keeping the coordination number of the central zinc the same,
revealed no significant changes in the redox potentials. This
suggests that replacing the coordinated pyridine of the fullero-
pyrrolidine unit by externally added 3-picoline does not change
the electronic structure of the porphyrin π-system to an
appreciable extent.
(8) (a) Guldi, D. M. Chem. Commun. 2000, 321. (b) Armaroli, N.;
Marconi, G.; Echegoyen, L.; Bourgeois, J.-P.; Diederich, F. Chem. Eur. J.
2000, 6, 1629. (c) Guldi, D. M.; Luo, C.; Da Ros, T.; Prato, M.; Dietel,
E.; Hirsch, A.; Chem. Commun. 2000, 375. (d) Luo, C.; Guldi, D. M.;
Imahori, H.; Tamaki, K.; Sakata, Y. J. Am. Chem. Soc. 2000, 122, 6535.
(e) Kuciauskas, D.; Liddell, P. A.; Lin, S.; Stone, S. G.; Moore, A. L.;
Moore, T. A.; Gust, D. J. Phys. Chem. B. 2000, 104, 4307. (f) Schuster, D.
I.; Cheng, P.; Wilson, S. R.; Prokhorenko, V.; Katterie, M.; Holzwarth, A.
R.; Braslavsky, S. E.; Klihm, G.; Williams, R. M. Luo, C. J. Am. Chem.
Soc. 2000, 121, 11599. (g) Imahori, H.; El-Khouly, M. E.; Fujitsuka, M.;
Ito, O.; Sakata, Y.; Fukuzumi, S. J. Phys. Chem. A. 2001, 105, 325.
(9) Fullerene and Related Structures; Hirsch, A., Ed.; Springer: Berlin,
1999; Vol. 199,
Temperature-Dependent “Tail-On” and “Tail-Off” Bind-
ing. The optical absorption spectrum of the zinc porphyrin-
(13) (a) Connolly, J. S.; Bolton, J. R. In Photoinduced Electron Transfer;
Fox, M. A., Channon, M., Eds.; Elsevier: Amsterdam, 1988; Part D, pp
303-393. (b) Antolovich, M.; Keyte, P. J.; Oliver, A. M.; Paddon-Row:
M. N.; Droon, J.; Verhoever, J. W.; Jonker, S. A.; Warman, J. M. J. Phys.
Chem. 1991, 95, 1933. (c) Macpherson, A. N.; Liddell, P. A.; Lin, S.; Noss,
L.; Seely, G. R.; DeGraziano, J. M.; Moore, A. L.; Moore, T. A.; Gust, D.
J. Am. Chem. Soc. 1995, 117, 7202.
(14) (a) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993,
115, 9798. (b) Prato, M.; Maggini, M.; Giacometti, C.; Scorrano, G.;
Sandona, G.; Farnia, G. Tetrahedron, 1996, 52, 5221.
(10) (a) Allemand, P. M.; Koch, A.; Wudl, F.; Rubin, Y.; Diederich, F.;
Alvarez, M. M.; Anz S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991, 113,
1050. (b) Xie, Q.; Perez-Cordero, E.; Echegoyen, L. J. Am. Chem. Soc.
1992, 114, 3978.
(15) D’Souza, F.; Krishnan, V. Inorg. Chim. Acta 1990, 176, 131.
(16) Smith, K. M. Porphyrins and Metalloporphyrins; Elsevier: New
York, 1977.
(11) Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. E.; Diederich, F.;
Fostiropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver,
K. E.; Sensharma, E.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630.
(12) Imahori, H.; Hagiwara, K.; Akiyama, T.; Aoki, Ml; Taniguchi, S.;
Okada, T.; Shirakawa, M.; Sakata, Y. Chem. Phys. Lett. 1996, 263, 545.
(17) (a) Deviprasad, G. R.; Zandler, M. E.; D’Souza, F. In Fullerenes
2000: Electrochemistry and Photochemistry; Fukuzumi, S., D’Souza, F.,
Guldi, D. M., Eds.; Proc. Electrochem. Soc. 2000, 8, 182. (b) Kutner, W.;
Noworyta, K.; Deviprasad, G. R.; D’Souza, F. J. Electrochem. Soc. 2000,
147, 2647.