212
Mst.N. Parvin et al. / Applied Catalysis A: General 413–414 (2012) 205–212
H
Acknowledgements
COOEt
B-
Authors thank for financial support from National Research
CN
Foundation of Korea (NRF) grant funded by the Korea government
(MEST) (no. 2011-0001321) and MKE (Ministry of Knowledge Econ-
omy) for Nano Center for Fine Chemicals Fusion Technology.
COOEt
CN
H
B-H+
References
B-H+
[1] M.J. Earle, K.R. Seddon, Pure Appl. Chem. 72 (2000) 1391–1398.
[2] R.D. Rogers, K.R. Seddon, Science 203 (2003) 792–793.
[3] N.P. Tarasova, Y.V. Smetannikov, A.A. Zanin, Russ. Chem. Rev. 79 (2010)
463–477.
[4] N. Zilkova, A. Zukal, J. Cejka, Micropor. Mesopor. Mater. 95 (2006) 176–179.
[5] M. Moniruzzaman, N. Kamiya, M. Goto, Org. Biomol. Chem. 8 (2010) 2887–2899.
[6] T. Welton, Chem. Rev. 99 (1999) 2071–2084.
COOEt
CN
O
[7] F. Cozzi, Adv. Synth. Catal. 348 (2006) 1367–1390.
[8] R.A. Reziq, D. Wang, M. Post, H. Alper, Adv. Synth. Catal. 349 (2007) 2145–2150.
[9] P. Han, H. Zhang, X. Qiu, X. Ji, L. Gao, J. Mol. Catal. A: Chem. 295 (2008)
57–67.
[10] A. Riisager, R. Fehrmann, M. Haumann, P. Wasserscheid, Top. Catal. 40 (2006)
91–102.
COOEt
CN
O
H
[11] S. Luo, J. Li, L. Zhang, H. Xu, J.-P. Cheng, Chem. Eur. J. 14 (2008) 1273–1281.
[12] I. Hermans, J.V. Deun, K. Houthoofd, J. Peeters, P.A. Jacobs, J. Catal. 251 (2007)
204–212.
[13] K. Yamaguchi, T. Imago, Y. Ogasawara, J. Kasai, M. Kotani, N. Mizuno, Adv. Synth.
Catal. 348 (2006) 1516–1520.
[14] H. Hagiwara, S. Inotsume, M. Fukushima, T. Hoshi, T. Suzuki, Chem. Lett. 35
(2006) 926–927.
Scheme 3. Representative mechanism for the Knoevenagel condensation reaction
over ILS through microwave irradiation.
[15] A. Corma, H. Garcia, Adv. Synth. Catal. 348 (2006) 1391–1412.
[16] S. Huh, J.W. Wiench, J.-C. Yoo, M. Pruski, V.S.-Y. Lin, Chem. Mater. 15 (2003)
4247–4256.
[17] Y. Xia, Z. Yang, R. Mokaya, Chem. Mater. 18 (2006) 1141–1148.
[18] M.-A. Neouze, J. Mater. Chem. 20 (2010) 9593–9607.
[19] R.J. Kalbasi, M. Kolahdoozan, A. Massah, K. Shahabian, Bull. Korean Chem. Soc.
31 (2010) 2618–2626.
Knoevenagel condensation is proposed in Scheme 3. The solid sup-
ported ionic liquid with base character Cl− (B−) abstracts a proton
from the active methylene group of ethyl cyanoacetate leading to
formation of carbanion. The formed carbanion of ethyl cyanoac-
etate makes nucleophilic attack to the carbonyl carbon atom of
aromatic aldehydes, followed by loss of water molecule to form
␣, -unsaturated carbonyl compound.
[20] F. Hoffman, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45 (2006)
3216–3251.
[21] A. Taguchi, P. Schuth, Micropor. Mesopor. Mater. 77 (2005) 1–45.
[22] R.M. Martin-Aranda, J. Cejka, Top. Catal. 53 (2010) 141–153.
[23] S.-E. Park, E.A. Prasetyanto, Top. Catal. 52 (2009) 91–100.
[24] Y. Liu, J. Peng, S. Zhai, J. Li, J. Mao, M. Li, H. Qiu, G. Lai, Eur. J. Inorg. Chem. 15
(2006) 2947–2949.
[25] R. Martínez-Palou, J. Mex. Chem. Soc. 51 (2007) 252–264.
[26] M.A. Herrero, J.M. Kremsner, C.O. Kappe, J. Org. Chem. 73 (2008) 36–47.
[27] K. Mogilaiah, H.S. Babu, K. Vidya, K.S. Kumar, Indian J. Chem. 49B (2010)
390–393.
[28] X. Wang, J.C.C. Chan, Y.-H. Tseng, S. Cheng, Micropor. Mesopor. Mater. 95 (2006)
57–65.
[29] S. Zhang, Y. Chen, F. Li, X. Lu, W. Dai, R. Mori, Catal. Today 115 (2006)
61–69.
[30] M.D. Gracia, M.J. Jurado, R. Luque, J.M. Campelo, D. Luna, J.M. Marinas, A.A.
Romero, Micropor. Mesopor. Mater. 118 (2009) 87–92.
[31] N. Jiang, H. Jin, Y.-H. Mo, E.A. Prasetyanto, S.-E. Park, Micropor. Mesopor. Mater.
141 (2011) 16–19.
[32] Sujandi, S.-E. Park, D.-S. Han, S.-C. Han, M.-J. Jin, T. Oshuna, Chem. Commun. 39
(2006) 4131–4133.
[33] E.A. Prasetyanto, S.C. Lee, S.M. Jeong, S.-E. Park, Chem. Commun. 19 (2008)
1995–1997.
[34] P. Van Der Voort, P.I. Ravikovitch, K.P. de Jong, A.V. Neimark, A.H. Janssen,
M. Benjelloun, E. Van Bavel, P. Cool, B.M. Weckhuysen, E.F. Vansant, Chem.
Commun. 9 (2002) 1010–1011.
4. Conclusions
In the present study ordered organo functionalized SBA-15 (ILS)
were synthesized by the co-condensations of MTESPImCl ionic liq-
uid and sodium metasilicate was carried out in the presence of
amphilic triblock co-polymer (P123) as a structure directing agent
under the acidic conditions. The morphologies of prepared sam-
ples were hexagonal short channeled with platelet type instead of
fibrous. The high loading ratio of ionic liquid to silica led to decrease
the ordered hexagonal mesoporousity of ILS. The performance of
the catalyst depended on loading ratio of the ionic liquid to silica.
ILS catalyst of 7.5% loading showed the optimum catalytic activity
for Knoevenagel condensation under the employed reaction con-
ditions. The catalyst has wide substrate scope from substituted
aromatic to heteroaromatic aldehydes within short reaction times
of 6 min in solvent free conditions. The reaction methodology of
this heterogenized organocatalyst was elegant, fast and efficient.
Further this protocol avoided the use of expensive, harsh chemi-
cals, and leads to high yields of products with very fast reaction
time in solvent free media. The catalyst can be easily recovered and
reused without loss of its catalytic activity and selectivity.
[35] A. Zukal, H. Siklova, J. Cejka, Langmuir 24 (2008) 9837–9842.
[36] C.J. Gommes, H. Friedrich, M. Wolters, P.E. de Jongh, K.P. de Jong, Chem. Mater.
27 (2009) 1311–1317.
[37] M.B. Ansari, H. Jin, M.N. Parvin, S.–E. Park, Catal. Today (2011),
doi:10.1016/j.cattod.2011.07.024.