Organometallics 1999, 18, 2933-2935
2933
Ca tion ic Zir con ocen e Hyd r id es: A New Typ e of High ly
Effective In itia tor s for Ca r boca tion ic P olym er iza tion s
Andrew G. Carr, David M. Dawson, Mark Thornton-Pett, and
Manfred Bochmann*
School of Chemistry, University of Leeds, Leeds LS2 9J T, U.K.
Received April 26, 1999
Summary: The reaction of [CPh3][B(C6F4R)4] with [Cp′2-
ZrH2]2 (Cp′ ) C5H4SiMe3) gives the new binuclear
hydrido complexes [Cp′4Zr2H3][B(C6F4R)4] (R ) F, SiPri3),
which are highly active initiators for the polymerization
of isobutene and isobutene-isoprene copolymerizations
at near-zero concentrations of ionizing solvents. The
structure of the trinuclear hydride [Cp′5(η1:η5-C5H3-
group organometallic complexes are active in this way,
including Cp*TiMe2(µ-Me)B(C6F5)3,3 [AlCp2]+,4 (C5H4-
SiMe3)2Y(µ-Me)B(C6F5)3,5 [Zr{N(SiMe3)2}3]+,6 Cp2ZrMe2/
[CPh3][B(C6F5)4]/H2O,7 Cp2ZrMe2/B(C6F5)3,8 and [SiMe3]-
[B(C6F5)4],9 which give high-molecular-weight isobutene
polymers at temperatures as high as -20 °C.
SiMe3)Zr3H4]+[B(C6F4SiPri ) ]- is reported.
Although after a few monomer additions to the first
initiation product the course of the polymerization
should be independent from the organometallic species
and at best be influenced by the nature of the counter-
anion, we observed that for a given anion different
organometallic species exhibit very different initiator
efficiencies, with some leading to high polymer yields,
while others give comparably low conversions before
becoming inactive. We now find that cationic zir-
conocene hydrides constitute a new family of unusually
effective initiators, in particular for the polymerization
and copolymerization of isobutene at near-zero concen-
trations of chlorocarbon solvents.
3 4
The copolymerization of isobutene and isoprene to
butyl rubber is a large-scale industrial process based
on a AlCl3/H2O solution as “catalyst” in an ionizing
solvent (chloromethane).1 The polymerization is initi-
ated by protons and follows a carbocationic mechanism,
with tertiary carbocations as the propagating species
(eq 1). Since under such conditions, especially in the
Cationic zirconocene hydrides [Cp2ZrH]+ and [Cp2-
ZrH(L)]+ have previously been made by hydrogenoly-
sis of the corresponding methyl complexes; all are
mononuclear.10,11 In contrast, the reaction of [CPh3]-
[B(C6F4R)4]10d,12 with [Cp′2ZrH2]2 (Cp′ ) C5H4SiMe3)13
gives the binuclear complexes [Cp′4Zr2H3][B(C6F4R)4]
(1)
-
presence of nucleophiles such as H2O, Cl- and AlCl4
,
chain transfer via deprotonation of the -CMe2+ cations
is facile, polymers of adequately high molecular weight
are only obtained at very low (-100 °C) temperatures,
a costly and energy-intensive procedure.
(1: a , R ) F; b, R ) SiPri ) (Scheme 1).14 The reaction
3
(3) Barsan, F.; Baird, M. C. J . Chem. Soc., Chem. Commun. 1995,
1065. Barsan, F.; Karam, A. R.; Parent, M. A.; Baird, M. C. Macro-
molecules 1998, 31, 8439.
(4) Dawson, D. M.; Bochmann, M. Angew. Chem. 1996, 108, 2371;
Angew. Chem., Int. Ed. Engl. 1996, 35, 2226.
(5) Song, X.; Thornton-Pett, M.; Bochmann, M. Organometallics
1998, 17, 1004.
(6) Carr, A. G.; Dawson, D. M.; Bochmann, M. Macromol. Rapid
Commun. 1998, 19, 205.
(7) Shaffer, T. D.; Ashborough, J . R. J . Polym. Sci., Part A: Polym.
Chem. 1997, 35, 329.
(8) Carr, A. G.; Dawson, D. M.; Bochmann, M. Macromolecules 1998,
31, 2035.
(9) J acobs, S.; Kennedy, J . P. Polymer Bull. 1998, 41, 503. Kennedy,
J . P.; Pi, Z.; J acobs, S. Abstr. Pap.-Am. Chem. Soc. 1999, 217, 173-
PMSE.
(10) (a) Yang, X.; Stern, C. L.; Marks, T. J . Angew. Chem., Int. Ed.
Engl. 1992, 31, 1375. (b) Yang, X.; Stern, C. L.; Marks, T. J . J . Am.
Chem. Soc. 1994, 116, 10015. (c) J ia, L.; Yang, X.; Ishihara, A.; Marks,
T. J . Organometallics 1995, 14, 3135. (d) J ia, L.; Yang, X.; Stern, C.
L.; Marks, T. J . Organometallics 1997, 16, 842. (e) Chen, Y. X.; Marks,
T. J . Organometallics 1997, 16, 3649.
Cationic group 4 metallocenes stabilized by very
weakly coordinating anions are well-known as Ziegler-
Natta catalysts for the polymerization of 1-alkenes.2 The
feature common to all these compounds is the highly
electrophilic metal center and the essentially nonnu-
cleophilic character of the anion. Such systems should
therefore (a) be capable of acting as cationic initiators
and (b) minimize nucleophile-assisted chain transfer
and, hence, allow cationic polymerizations to be con-
ducted at significantly higher temperatures. Indeed, as
we and others have shown, several types of cationic or
zwitterionic early-transition-metal, lanthanide, and main-
(1) Kenndy, J . P.; Mare´chal, E. Carbocationic Polymerization;
Wiley: New York, 1982. Kenndy, J . P.; Iva´n, B. Designed Polymers by
Carbocationic Macromolecular Engineering: Theory and Practice;
Hanser: Munich, 1991. Nuyken, O.; Pask, S. D. In Comprehensive
Polymer Science; Allen, G., Bevington, J . C., Eds.; Pergamon: Oxford,
U.K., 1989; Vol. 3, p 619, and references therein.
(2) Kaminsky, W. J . Chem. Soc., Dalton Trans. 1998, 1413. Boch-
mann, M. J . Chem. Soc., Dalton Trans. 1996, 255. Grubbs, R. H.;
Coates, G. W. Acc. Chem. Res. 1996, 29, 85. Brintzinger, H. H.; Fischer.
D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth, R. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1143.
(11) (a) J ordan, R. F.; Bradley, P. K.; Baenziger, N. C.; LaPointe,
R. E. J . Am. Chem. Soc. 1990, 112, 1289. (b) Guo, Z.; Bradley, P. K.;
J ordan, R. F. Organometallics 1992, 11, 2690. (c) Guo, Z.; Swenson,
D. C.; J ordan, R. F. Organometallics 1994, 13, 1424.
(12) Chien, J . C. W.; Tsai, W. M.; Rausch, M. D. J . Am. Chem. Soc.
1991, 113, 8570. Bochmann, M.; Lancaster, S. L. J . Organomet. Chem.
1992, 434, C1.
(13) Larsonneur, A.; Choukroun, R. Organometallics 1993, 12, 3216.
10.1021/om990304y CCC: $18.00 © 1999 American Chemical Society
Publication on Web 07/10/1999