Z.-G. Gu et al. / Polyhedron 51 (2013) 186–191
191
D
K
-enantiomer interacts more strongly with DNA, compared to the
-isomer. For the -enantiomer, the right-handed propeller-like
structure with appropriate steric matching with right-handed ct-
D
DNA displays a greater affinity than the
K
-enantiomer.
References
[1] K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev. 99 (1999) 2777.
[2] C. Metcalfe, J.A. Thomas, Chem. Soc. Rev. 32 (2003) 215.
[3] M.J. Hannon, Chem. Soc. Rev. 36 (2007) 280.
4. Conclusion
[4] F.R. Keene, J.A. Smitha, J.G. Collins, Coord. Chem. Rev. 253 (2009) 2021.
[5] M.R. Gill, J.A. Thomas, Chem. Soc. Rev. 41 (2012) 3179.
[6] U. McDonnell, M.R. Hicks, M.J. Hannon, A. Rodger, J. Inorg. Biochem. 102 (2008)
2052.
[7] J.K. Barton, E.D. Olmon, P.A. Sontz, Coord. Chem. Rev. 255 (2011) 619.
[8] H.K. Liu, P.J. Sadler, Acc. Chem. Res. 44 (2011) 349.
[9] J.D. Aguirre, A.M. Angeles-Boza, A. Chouai, J.P. Pellois, C. Turro, K.R. Dunbar, J.
Am. Chem. Soc. 131 (2009) 11353.
Two pairs of mononuclear iron(II) chiral enantiomers with
Schiff base ligands were synthesized with good yields by conve-
nient procedures. The complexes possess octahedral geometry of
absolute configuration in solution and solid state. The ligand chi-
rality plays a crucial role in determining the geometrical isomerism
of the possible fac- and mer-isomers and enantiomorphism of the
[10] C.J. Burrows, J.G. Muller, Chem. Rev. 98 (1998) 1109.
[11] R. Corradini, S. Sforza, T. Tedeschi, R. Marchelli, Chirality 19 (2007) 269.
[12] J.K. Barton, Science 233 (1986) 727.
[13] H. Song, J.T. Kaiser, J.K. Barton, Nat. Chem. 4 (2012) 615.
[14] S.E. Howson, A. Bolhuis, V. Brabec, G.J. Clarkson, J. Malina, A. Rodger, P. Scott,
Nat. Chem. 4 (2012) 31.
[15] J.K. Barton, L.A. Basile, A. Danishefsky, A. Alexandrescu, Proc. Natl. Acad. Sci.
USA 81 (1984) 1961.
[16] H.J. Yu, X.H. Wang, M.L. Fu, J.S. Ren, X.G. Qu, Nucleic Acids Res. 36 (2008) 5695.
[17] Mudasir, N. Yoshioka, H. Inoue, J. Inorg. Biochem. 102 (2008) 1638.
[18] S. Torelli, S. Delahaye, A. Hauser, G. Bernardinelli, C. Piguet, Chem. Eur. J. 10
(2004) 3503.
[19] L.A. Chen, J.J. Ma, M.A. Celik, H.L. Yu, Z.X. Cao, G. Frenking, L. Gong, E. Meggers,
Chem. Asian J. 7 (2012) 2523.
[20] C. Fu, M. Wenzel, E. Treutlein, K. Harms, E. Meggers, Inorg. Chem. 51 (2012)
10004.
[21] S.E. Howson, L.E.N. Allan, N.P. Chmel, G.J. Clarkson, R.J. Deeth, A.D. Faulkner,
D.H. Simpson, P. Scott, Dalton Trans. 40 (2011) 10416.
[22] J. Crassous, Chem. Soc. Rev. 38 (2009) 830.
possible
D- and K-enantiomers. The DNA binding behaviors of
the chiral complexes have been investigated by UV absorption,
fluorescence, and circular dichroism spectrometry. Results suggest
that all complexes can interact with DNA and the binding mode
with DNA may most likely to be the groove binding mode. Interest-
ingly, discernible differences of enantiomeric selectivity have been
observed in the interaction of the different enantiomers with DNA.
The
ability than the
restricted mobility when bound to DNA because it is more deeply
buried in the groove of DNA compared to the isomer. The details
D
-enantiomer of the complexes showed stronger DNA binding
K
-enantiomer, suggesting that the isomer has
D
K
of the DNA binding mode, specific binding sites and enantiomeric
selectivity are not very clear at present and further studies are cur-
rently in progress.
[23] M.E. Reichmann, S.A. Rice, C.A. Thomas, P. Doty, J. Am. Chem. Soc. 76 (1954)
3047.
Acknowledgments
[24] SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.
[25] G.M. Sheldrick, SADABS An Empirical Absorption Correction Program, Bruker
Analytical X-ray Systems, Madison, WI, 1996.
[26] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[27] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson, R. Taylor, J. Chem.
Soc., Dalton Trans. (1989) S1.
[28] J.K. Barton, A.T. Danishefsky, J.M. Goldberg, J. Am. Chem. Soc. 106 (1984) 2172.
[29] V.A. Bloomfield, Biopolymers 44 (1997) 269.
[30] N. Korolev, N.V. Berezhnoy, K.D. Eom, J.P. Tam, L. Nordenskicld, Nucleic Acids
Res. 37 (2009) 7137.
[31] B. Maity, M. Roy, S. Saha, A.R. Chakravarty, Organometallics 28 (2009) 1495.
[32] X.D. Dong, X.Y. Wang, Y.F. He, Z. Yu, M.X. Lin, C.L. Zhang, J. Wang, Y.J. Song, Y.M.
Zhang, Z.P. Liu, Y.Z. Li, Z.J. Guo, Chem. Eur. J. 16 (2010) 14181.
[33] A.L.M. Le Ny, C.T. Lee, Biophys. Chem. 142 (2009) 76.
[34] S.K. Teo, W.A. Colburn, W.G. Tracewell, K.A. Kook, D.I. Stirling, M.S. Jaworsky,
M.A. Scheffler, S.D. Thomas, O.L. Laskin, Clin. Pharmacokinet. 43 (2004) 311.
[35] M.D. Wyatt, B.J. Garbiras, M.K. Haskell, M. Lee, R.L. Souhami, J.A. Hartley, Anti-
Cancer Drug Des. 1 (1994) 511.
[36] B. Peng, W.H. Zhou, L. Yan, H.W. Liu, L. Zhu, Transition Met. Chem. 34 (2009)
231.
[37] R. Vijayalakshmi, M. Kanthimathi, R. Parthasarathi, B.U. Nair, Bioorg. Med.
Chem. 14 (2006) 3300.
This work was supported by the National Natural Science Foun-
dation of China (21101078 and 21276105), the Program for New
Century Excellent Talents in University of China (NCET-11-0657),
and the Natural Science Foundation of Jiangsu Province
(BK2011143), the Fundamental Research Funds for the Central Uni-
versities (JUSRP21111), the State Key Laboratory of Coordination
Chemistry of Nanjing University.
Appendix A. Supplementary material
CCDC 894297 and 894298 contain the supplementary crystallo-
graphic data for
K-1 and D-2. These data can be obtained free of
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail: de-
posit@ccdc.cam.ac.uk. Supplementary data associated with this