10.1002/adsc.201701593
Advanced Synthesis & Catalysis
Young Researcher Overseas Visits Program for Accelerating
Brain Circulation” (No. R2401), and the MEXT (Japan) program
"Strategic Molecular and Materials Chemistry through Innovative
Coupling Reactions" of Hokkaido University.
References
[1] Selected reviews: a) M. North, Synlett 1993, 807–820;
b) F. Effenberger, Angew. Chem. 1994, 104, 1609–
1619; Angew. Chem. Int. Ed. Engl. 1994, 33, 1555–
1564; c) R. J. H. Gregory, Chem. Rev. 1999, 99, 3649–
3682; d) M. Shibasaki, M. Kanai, K. Funabashi, Chem.
Commun. 2002, 1989–1999; e) J.-M. Brunel, I. P.
Holmes, J.-M. Brunel, I. P. Holmes, Angew. Chem.
2004, 116, 2810–2837; Angew. Chem. Int. Ed. 2004, 43,
2752–2778; f) M. Kanai, N. Kato, E. Ichikawa, M.
Shibasaki, Synlett 2005, 1491–1508; g) F.-X. Chen, X.
Feng, Curr. Org. Synth. 2006, 3, 77–97; h) M.
Shibasaki, M. Kanai, Org. Biomol. Chem. 2007, 5,
2027–2039; i) N. H. Khan, R. I. Kureshy, S. H. R. Abdi,
S. Agrawal, R. V. Jasra, Coord. Chem. Rev. 2008, 252,
593–623; j) M. North, D. L. Usanov, C. Young, Chem.
Rev. 2008, 108, 5146–5226; k) J. Gawronski, N.
Wascinska, J. Gajewy, Chem. Rev. 2008, 108, 5227–
5252; l) W. Wang, X. Liu, L. Lin, X. Feng, Eur. J. Org.
Chem. 2010, 4751–4769; m) E. Bergin in Science of
Synthesis: Stereoselective Synthesis, Vol. 2 (Ed.; G. A.
Molander), Thieme, Stuttgart, 2010, pp 531–583; (n) M.
North in Comprehensive Chirality, Vol. 4 (Eds.; E. M.
Carreira, H. Yamamoto, M. Shibasaki), Elsevier,
Amsterdam, 2012, pp 315–327; o) N. Kurono, T.
Ohkuma, ACS Catal. 2016, 6, 989–1023.
Scheme 2. Synthesis of
Derivative with a Chiral Quaternary Carbon 8.
a
4-Iodo-2(3H)-furanone
C6H5OLi systems. The reaction was carried out with
an S/C up to 2000, which was about two-orders of
magnitude larger than those in previous reports. A
series of simple and functionalized substrates was
converted into the alkynyl tertiary cyanohydrin silyl
ethers in 97% ee for unfunctionalized products and in
99% ee for functionalized compounds by using the
catalysts bearing appropriate amino-acid ligands in
the best cases. The wide scope of the substrates is
notable. To our knowledge the enantioselectivity is
the highest yet reported for the cyanosilylation of
alkynyl ketones. The cyanohydrin product was
readily converted to the 4-iodo-2(3H)-furanone
derivative without loss of the enantiomeric purity.
Experimental Section
[2] a) H. Deng, M. P. Isler, M. L. Snapper, A. H. Hoveyda,
Angew. Chem. 2002, 114, 1051–1054; Angew. Chem.
Int. Ed. 2002, 41, 1009–1012; b) S.-K. Tian, R. Hong, L.
Deng, J. Am. Chem. Soc. 2003, 125, 9900–9901; c) M.
Hatano, K. Yamakawa, T. Kawai, T. Horibe, K.
Ishihara, Angew. Chem. 2016, 128, 4089–4093; Angew.
Chem. Int. Ed. 2016, 55, 4021–4025.
Typical Procedure for the Enantioselective Cyano-
silylation of 1a with (SA,SP)-3a
To a solution of Ru[(S)-phgly]2[(S)-binap] ((SA,SP)-3a) (2.0
mg, 2 µmol), (CH3)3SiCN (202 mg, 2.04 mmol) and 4-
(tert-butyldimethylsilyl)but-3-yn-2-one (1a) (179 mg,
0.982 mmol) in t-C4H9OCH3 (6.0 mL) was added C6H5OLi
(2 µmol) as a THF solution (40 mM, 50 µL) at –78 ºC
under an argon atmosphere. The reaction mixture was
continuously stirred for 24 h at the same temperature, then
poured into an ice water bath to terminate the reaction. The
mixture was extracted 3 times by ethyl acetate (10 mL × 3).
The collected organic phase was washed with brine and
dried over Na2SO4. After the Na2SO4 was filtered off, the
resulting mixture was concentrated in vacuo. The crude
product was purified by silica-gel column chromatography
[3] Selected reviews: a) P. J. Parsons, C. S. Penkett, A. J.
Shell, Chem. Rev. 1996, 96, 195–206; b) L.-B. Han, M.
Tanaka, Chem. Commun. 1999, 395–402; c) G. Poli, G.
Giambastiani, A. Heumann, Tetrahedron 2000, 56,
5959–5989; d) J. Blanco-Urgoiti, L.; Añorbe, L. Pérez-
Serrano, G. Domínguez, J. Pérez-Castells, Chem. Soc.
Rev. 2004, 33, 32–42; e) F. Alonso, I. P. Beletskaya, M.
Yus, Chem. Rev. 2004, 104, 3079–3159; f) M. Beller, J.
Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116,
3448–3479; Angew. Chem. Int. Ed. 2004, 43, 3368–
3398; g) K. C. Nicolaou, P. G. Bulger, D. Sarlah,
Angew. Chem. 2005, 117, 4516–4563; Angew. Chem.
Int. Ed. 2005, 44, 4442–4489; h) I. Beletskaya, C.
Moberg, Chem. Rev. 2006, 106, 2320–2354; i) G. Zeni,
R. C. Larock, Chem. Rev. 2006, 106, 4644–4680; j) E.
Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008,
108, 3326–3350; k) I. P. Beletskaya, V. P. Ananikov,
Chem. Rev. 2011, 111, 1596–1636; l) J. Xiao, X. Li,
Angew. Chem. 2011, 123, 7364–7375; Angew. Chem.
Int. Ed. 2011, 50, 7226–7236; m) D. S. W. Lim, E. A.
Anderson, Synthesis 2012, 44, 983–1010; n) M.
(hexane/ethyl acetate
= 4:1) to afford (R)-4-(tert-
butyldimethylsilyl)-2-methyl-2-((trimethylsilyl)oxy)but-3-
ynenitrile ((R)-2a) (269 mg, 97% yield, 97% ee). The ee
value of 2a was determined by chiral GC analysis: chirasil
dex (0.32 mm × 25 m), carrier gas: helium (72 kPa),
column temp: 110 ºC for 10 min then heating to 190 ºC at a
rate of 10 ºC min–1, tR of (R)-2a: 8.8 min (98.3 %), tR 1of
25
(S)-2a: 9.3 min (1.7 %), [α] ,D 0.3 (c = 1.01, CHCl3), H
NMR (400 MHz, CDCl3): δ 1.85 (s, 3H), 0.95 (s, 9H), 0.29
(s, 9H), 0.140 (s, 3H), 0.135 (s, 3H). The procedures and
chemical properties of products in detail are described in
the Supporting Information.
Acknowledgements
This work was supported by Grants-in-Aid from the Japan Society
for the Promotion of Science (JSPS) (No. 15H03802, No.
25410031, and No. 16K17900), the JSPS program “Strategic
4
This article is protected by copyright. All rights reserved.