6106
J . Org. Chem. 1999, 64, 6106-6111
Several procedures have been described to prepare R,â-
Ster eoselective Syn th esis of â-Su bstitu ted
diamino acids.9-13 One common route for their prepara-
tion involves azide displacement under Mitsunobu14
conditions of the hydroxyl group of serine, followed by
r,â-Dia m in o Acid s fr om â-Hyd r oxy Am in o
Acid s
Yue Luo, Mark A. Blaskovich, and Gilles A. Lajoie*
(6) (a) Zhang, L. H.; Anzalone, L.; Ma, P.; Kauffman, G. S.; Storace,
L.; Ward, R. Tetrahedron Lett. 1996, 37, 4455. (b) Wityak, J .; Sielecki,
T. M.; Pinto, D. J .; Emmett, G.; Sze, J . Y.; Liu, J .; Tobin, A.; Wang, S.;
J iang, B.; Ma, P.; Mousa, S. A.; Wexler, R. R.; Olson, R. E. J . Med.
Chem. 1997, 40, 50.
The Guelph-Waterloo Center for Graduate Work in
Chemistry, Department of Chemistry, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1
(7) (a) Baldwin, J . E.; Spivey, A. C.; Schofield, C. J .; Sweeney, J . B.
Tetrahedron 1993, 49, 6309. (b) J ones, R. C. F.; Crockett, A. K.; Rees,
D. C.; Gilbert, I. H. Tetrahedron 1994, 5, 1661. (c) Burgaud, B. G. M.;
Horwell, D. C.; Padova, A.; Pritchard, M. C. Tetrahedron 1996, 52,
13035.
(8) Hayashi, T. J pn. Kokai Tokkyo Koho J p 08, 245, 552 [96, 245,
552], Sept 24, 1996; Chem. Abstr. 1996, 126, 31651n.
Received March 16, 1999
In tr od u ction
R,â-Diamino acids have been found in natural products
as free amino acids,1 as structural components in peptides
and â-lactam antibiotics,2 and in other peptides such as
cyclotheonamide.3 R,â-Diamino acids are versatile syn-
thons and have been incorporated in several medicinally
relevant compounds such as protein-tyrosine kinase
inhibitors,4 quisqualic acid analogues,5 and glycoprotein
IIb/IIIa RGD receptor antagonists.6 Some unnatural
R-alkylated7 and racemic â-substituted8 R,â-diamino acids
have also been reported.
(9) R,â-Diamino acids have been synthesized from a Schmidt or
Hofmann rearrangement of aspartic acid9a-d or asparagine9e-i and
nucleophilic addition to aziridine-2-carboxylate.5c,7c,9j,9k â-Substituted
R,â-diamino acids have been synthesized from 3-amino-2-azetidinones
(γ-amino-â-lactam) formed via asymmetric cyclocondensation of R-azido
ketene and aldimine9l-n or via Mitsunobu cyclization of Boc-serine
amide N-oxide.9o,p Opening of the â-lactams by acid hydrolysis,9l-m,q,r
ammonium,9s and other R-amino acids9n,t can provide R,â-diamino acids
in free states and in forms incorporated into dipeptides. 3-Hydroxy-
â-lactam has also been used to prepare â-aminophenylalanine.9u
Alternatively, 3-hydroxy-â-lactam can be oxidized to an R-keto-â-lactam
and then converted to an R,â-diamino N-carboxyanhydride (NCA)9n,v
via a Bayer-Villiger oxidation and finally to R,â-diamino acids. Michael
addition of methylamine, dimethylamine, and benzylamine to 2,3-
dehydroamino acid (dehydroalanine) usually gave racemic R,â-diamino
acid derivatives.9w-y Chiral Ni(II) Schiff base complex of dehydroala-
nine can induce asymmetric Michael addition of primary and secondary
amines to give the substituted R,â-diamino acid derivatives in 90-
95% yield with 80-90 de.9z,10a Cbz- or Boc-protected serine has been
converted to â-lactones,10b,c which can react with amine and azide to
give R,â-diamino acid derivatives. (Hydroxymethyl)oxazolidinone has
been used to prepare (2R, 3S) diastereomers of â-aminophenylalanine
starting from 1-phenylallyl alcohol via Sharpless epoxidation.10d (a)
Rudinger, J .; Poduska, K.; Zaoral, M. Collect. Czech. Chem. Commun.
1960, 25, 2022. (b) Rao, L. N. Biochemistry 1975, 14, 5218. (c) Noguchi,
N.; Kuroda, T.; Hatanaka, M.; Ishimaru, T. Bull. Soc. Chem. J pn. 1982,
5, 633. (d) Schirlink, D.; Altenburger, J . Synthesis 1995, 1351. (e)
Moore, S. Patel, R. P.; Atherton, E.; Kondo, M.; Meienhofer, J . J . Med.
Chem. 1976, 19, 766. (f) Waki, M.; Kitajima, Y.; Izumiya, N. Synthesis
1981, 266. (g) Zhang, L. H.; Kauffman, G. S.; Pesti, J . A.; Yin, J . J .
Org. Chem. 1997, 62, 6918. (h) Karrer, P.; Schlosser, A. Helv. Chim.
Acta 1923, 6, 411. (i) Karrer, P.; Escher, K.; Widmer, R. Helv. Chim.
Acta 1926, 9, 301. (j) Solomon, M. E.; Lynch, C. L.; Rich, D. H.
Tetrahedron Lett. 1995, 36, 4955. (k) Davoli, P.; Forni, A.; Moretti, I.;
Prati, F. Tetrahedron: Asymmetry 1995, 6, 2011. (l) Ojima, I.; Delaloge,
F. Chem. Soc. Rev. 1997, 26, 377. (m) Ojima, I.; Habus, I. Tetrahedron
Lett. 1990, 31, 4289. (n) Palomo, C.; Aizpurua, J . M.; Ganboa, I. Russ.
Chem. Bull. 1996, 45, 2463. (o) Mattingly, P. G.; Miller, M. J . J . Org.
Chem. 1980, 45, 410. (p) Mattingly, P. G.; Kerwin, J . F., J r.; Miller,
M. J . J . Am. Chem. Soc. 1979, 101, 3983. (q) Ojima, I. Acc. Chem. Res.
1995, 28, 3. (r) Baldwin, J . E.; Adlington, R. M.; Mellor, L. C.
Tetrahedron 1994, 50, 5049. (s) Arai, H.; Hagmann, W. K.; Suguna,
H.; Hecht, S. M. J . Am. Chem. Soc. 1980, 102, 6631. (t) Palomo, C.;
Aizpurua, J . M.; Galarza, R.; Mielgo, A. Chem. Commun. 1996, 633.
(u) Moyna, G.; Williams, H. J .; Scott, A. I. Synth. Commun. 1997, 27,
1561. (v) Palomo, C.; Aizpurua, J . M.; Ganboa, I.; Carreaux, F.; Cuevas,
C.; Maneiro, E.; Ontoria, J . M. J . Org. Chem. 1994, 59, 3123. (w) Labia,
R.; Morin, C. J . Org. Chem. 1986, 51, 249. (x) Fu, S.-C. J .; Greenstein,
J . P. Arch. Biochem. 1948, 19, 467. (y) Price, V. E.; Greenstein, J . P.
J . Biol. Chem. 1948, 173, 337. (z) Belekon, Y. N.; Sagyan, A. S.;
Djamgaryan, S. M.; Bakhmutov, V. I.; Belikov, V. M. Tetrahedron 1988,
44, 5507.
(1) (a) Gmelin, R.; Straub, G.; Hasenmaier, G. Z. Physiol. Chem.
1959, 314, 2832. (b) Ikegami, F.; Murakoshi, I. Phytochemistry 1994,
35, 1089. (c) Evans, C. S.; Qureshi, M. Y.; Bell, E. A. Phytochemistry
1977, 16, 565. (d) Shaw, G. J .; Ellingham, P. J .; Bingham, A.; Wright,
G. J . Phytochemistry 1982, 21, 1635.
(2) For example, R,â-diamino propanoic and butanoic acids are found
in peptide and â-lactam antibiotics, including tuberactinomycin,2a-f
bleomycin,2g-i capreomycin,2j nocardicin,2k-p monobactam,2q,r lavendo-
mycin,2s,t antrimycin,2u,v glumamycin,2w and aspartocin:2x (a) Yoshioka,
H.; Aoki, T.; Goko, H.; Nakatsu, K.; Noda, T.; Sakakibara, H.; Take,
T.; Nagata, A.; Abe, J .; Wakamiya, T.; Shiba, T.; Kaneko, T. Tetrahe-
dron Lett. 1971, 2043. (b) Wakamiya, T.; Shiba, T. J . Antibiot. 1975,
28, 292. (c) Izumi, R.; Noda, T.; Ando, T.; Take, T.; Nagata, A. J .
Antibiot. 1972, 25, 201. (d) Noda, T.; Take, T.; Nagata, A.; Wakamiya,
T.; Shiba, T. J . Antibiot. 1972, 25, 427. (e) Nagata, A.; Ando, T.; Izumi,
R.; Sakakibara, H.; Take, T.; Hayano, K.; Abe, J .-N. J . Antibiot. 1968,
21, 681. (f) Ando, T.; Matsuura, K.; Izumi, R.; Noda, T.; Take, T.;
Nagata, A.; Abe, J . N. J . Antibiot. 1971, 24, 680. (g) Oppenheimer, N.
J .; Rodriquez, L. O.; Hecht, S. M. Proc. Natl. Acad. Sci. U.S.A. 1979,
76, 5616. (h) Takita, T.; Muraoka, Y.; Nakatani, T.; Fujii, A.; Umezawa,
Y.; Naganawa, H.; Umezawa, H. J . Antibiot. 1978, 31, 801. (i)
Umezawa, H.; Muraoka, Y.; Fujii, A.; Naganawa, H.; Takita, T. J .
Antibiot. 1980, 33, 1079. (j) Wang, M.; Gould, S. J . J . Org. Chem. 1993,
58, 5175. (k) Hashimoto, M.; Konomi, T.; Kamiya, T. J . Am. Chem.
Soc. 1976, 98, 3023. (l) Townsend, C. A.; Salituro, G. M.; Nguyen, L.
T.; DiNovi, M. J . Tetrahedron Lett. 1986, 27, 3819. (m) Koppel, G. A.;
McShane, L.; J ose, F.; Cooper, R. D. G. J . Am. Chem. Soc. 1978, 100,
3933. (n) Kamiya, T.; Oku, T.; Nakaguchi, O.; Takeno, H.; Hashimoto,
M.; Tetrahedron Lett. 1978, 2243. (o) Kamiya, T.; Hashimoto, M.;
Nakaguchi, O.; Oku, T. Tetrahedron 1979, 35, 323. (p) Isenring, H. P.;
Hofheinz, W.; Tetrahedron 1983, 39, 259. (q) Imada, A.; Kitano, K.;
Muroi, M.; Asai, M.; Nature (London) 1981, 289, 590. (r) Sykes, R. B.;
Cimarusti, C. M.; Bonner, D. P.; Bush, K.; Floyd, D. M.; Georgopa-
padakou, N. H.; Koster, W. H.; Liu, W. C.; Principe, W. L.; Rathnum,
M. L.; Slusarchyk, W. A.; Trejo, W. H.; Wells, J . J . Nature (London)
1981, 291, 498. (s) Komori, T.; Ezaki, M.; Kino, E.; Kohsala, M.; Aoki,
H.; Imanaka, H. J . Antibiot. 1985, 38, 691. (t) Uchida, I.; Shigematsu,
N.; Ezaki, M.; Hashimoto, M. Chem. Pharm. Bull. 1985, 33, 3053. (u)
Shimada, N.; Morimoto, K.; Naganawa, H.; Takita, T.; Hamada, M.;
Maeda, K.; Takeuchi, T.; Umezawa, H. J . Antibiot. 1981, 34, 1613. (v)
Schmidt, U.; Riedl, B. J . Chem. Soc., Chem. Commun. 1992, 20, 1186.
(w) Fujino, M.; Inoue, M.; Meyanagi, J .; Miyake, A. Bull. Chem. Soc.
J pn. 1965, 38, 515. (x) Martin, J . H.; Hausmann, W. K. J . Am. Chem.
Soc. 1960, 82, 2079.
(10) (a) Grigoryan, S. K.; Kuzmina, N. A.; Orlova, S. A.; Ikonnikov,
N. S.; Larichev, V. S.; Tararov, V.I.; Belekon, Y. N. Russ. Chem. Bull.
1997, 46, 483. (b) Arnold, L. D.; Kalantar, T. H.; Vederas, J . C. J . Am.
Chem. Soc. 1985, 107, 7105. (c) Arnold, L. D.; May, R. G.; Vederas, J .
C. J . Am. Chem. Soc. 1988, 110, 2237. (d) Rossi, F. M.; Powers, E. T.;
Yoon, R.; Rosenberg, L.; Meinwald, J . Tetrahedron 1996, 52, 10279.
(11) (a) Golding, B.; Howes, C. J . Chem. Res. (S) 1984, 1. (b) Fabiano,
E.; Golding, B.; Sadeghi, M. Synthesis 1987, 190.
(3) Bastiaans, H. M. M.; van der Baan, J . L.; Ottenheijm, H. C. J .
J . Org. Chem. 1997, 62, 3880.
(4) Lee, E. S.; J urayj, J .; Cushman, M. Tetrahedron 1994, 50, 9873.
(5) (a) Dugenet, P.; Yaouanc, J . J .; Sturtz, G. Synthesis 1982, 781.
(b) Subasinghe, N.; Schulte, M.; Roon, R. J .; Koerner, J . F.; J ohnson,
R. L. J . Med. Chem. 1992, 35, 4602. (c) Farthing, C. N.; Baldwin, J .
E.; Russell, A. T.; Schofield, C. J .; Spivey, A. C. Tetrahedron Lett. 1996,
37, 5225.
(12) Otsuka, M.; Kittaka, A.; Iimori, T.; Yamashita, H.; Kobayashi,
S.; Ohno, M. Chem. Pharm. Bull. 1985, 33, 509.
(13) (a) Schmidt, U.; Mundinger, K.; Riedl, B.; Haas, G.; Lau, R.
Synthesis 1992, 1201. (b) Schmidt, U.; Mundinger, K.; Mangold, R.;
Lieberknecht, A. J . Chem. Soc., Chem. Commun. 1990, 18, 1216.
(14) Mitsunobu, O. Synthesis 1981, 1.
10.1021/jo9904718 CCC: $18.00 © 1999 American Chemical Society
Published on Web 07/23/1999